ترغب بنشر مسار تعليمي؟ اضغط هنا

Reformulating noncontextuality inequalities in an operational approach

96   0   0.0 ( 0 )
 نشر من قبل Jing-Ling Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new theory-independent noncontextuality inequality is presented [Phys. Rev. Lett. 115, 110403 (2015)] based on Kochen-Specker (KS) set without imposing the assumption of determinism. By proposing novel noncontextuality inequalities, we show that such result can be generalized from KS set to the noncontextuality inequalities not only for state-independent but also for state-dependent scenario. The YO-13 ray and $n$ cycle ray are considered as examples.



قيم البحث

اقرأ أيضاً

Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e. their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13 ray noncontextuality inequality can be re-derived and generalized as an instance of our antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally complete POVMs. Antidistinguishability based inequalities were initially discovered as overlap bounds for the reality of the quantum state. Our main contribution here is to show that they are also noncontextuality inequalities.
Within the framework of generalized noncontextuality, we introduce a general technique for systematically deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many measurements, each of which has a finite number of outcomes. Given any fixed sets of operational equivalences among the preparations and among the measurements as input, the algorithm returns a set of noncontextuality inequalities whose satisfaction is necessary and sufficient for a set of operational data to admit of a noncontextual model. Additionally, we show that the space of noncontextual data tables always defines a polytope. Finally, we provide a computationally efficient means for testing whether any set of numerical data admits of a noncontextual model, with respect to any fixed operational equivalences. Together, these techniques provide complete methods for characterizing arbitrary noncontextuality scenarios, both in theory and in practice. Because a quantum prepare-and-measure experiment admits of a noncontextual model if and only if it admits of a positive quasiprobability representation, our techniques also determine the necessary and sufficient conditions for the existence of such a representation.
Measurement scenarios containing events with relations of exclusivity represented by pentagons, heptagons, nonagons, etc., or their complements are the only ones in which quantum probabilities cannot be described classically. Interestingly, quantum t heory predicts that the maximum values for any of these graphs cannot be achieved in Bell inequality scenarios. With the exception of the pentagon, this prediction remained experimentally unexplored. Here we test the quantum maxima for the heptagon and the complement of the heptagon using three- and five-dimensional quantum states, respectively. In both cases, we adopt two different encodings: linear transverse momentum and orbital angular momentum of single photons. Our results exclude maximally noncontextual hidden-variable theories and are in good agreement with the maxima predicted by quantum theory.
The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurement s, and comparing the values of unmeasured observables is not necessarily meaningful according to quantum theory. To overcome these conceptual difficulties, we take a different approach and define error and disturbance in an operational manner. In particular, we formulate both in terms of the probability that one can successfully distinguish the actual measurement device from the relevant hypothetical ideal by any experimental test whatsoever. This definition itself does not rely on the formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions. We then derive new Heisenberg-type uncertainty relations for both joint measurability and the error-disturbance tradeoff for arbitrary observables of finite-dimensional systems, as well as for the case of position and momentum. Our relations may be directly applied in information processing settings, for example to infer that devices which can faithfully transmit information regarding one observable do not leak any information about conjugate observables to the environment. We also show that Englerts wave-particle duality relation [PRL 77, 2154 (1996)] can be viewed as an error-disturbance uncertainty relation.
350 - Ibrahim Issa , Aaron B. Wagner , 2018
Given two random variables $X$ and $Y$, an operational approach is undertaken to quantify the ``leakage of information from $X$ to $Y$. The resulting measure $mathcal{L}(X !! to !! Y)$ is called emph{maximal leakage}, and is defined as the multiplica tive increase, upon observing $Y$, of the probability of correctly guessing a randomized function of $X$, maximized over all such randomized functions. A closed-form expression for $mathcal{L}(X !! to !! Y)$ is given for discrete $X$ and $Y$, and it is subsequently generalized to handle a large class of random variables. The resulting properties are shown to be consistent with an axiomatic view of a leakage measure, and the definition is shown to be robust to variations in the setup. Moreover, a variant of the Shannon cipher system is studied, in which performance of an encryption scheme is measured using maximal leakage. A single-letter characterization of the optimal limit of (normalized) maximal leakage is derived and asymptotically-optimal encryption schemes are demonstrated. Furthermore, the sample complexity of estimating maximal leakage from data is characterized up to subpolynomial factors. Finally, the emph{guessing} framework used to define maximal leakage is used to give operational interpretations of commonly used leakage measures, such as Shannon capacity, maximal correlation, and local differential privacy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا