ﻻ يوجد ملخص باللغة العربية
A new theory-independent noncontextuality inequality is presented [Phys. Rev. Lett. 115, 110403 (2015)] based on Kochen-Specker (KS) set without imposing the assumption of determinism. By proposing novel noncontextuality inequalities, we show that such result can be generalized from KS set to the noncontextuality inequalities not only for state-independent but also for state-dependent scenario. The YO-13 ray and $n$ cycle ray are considered as examples.
Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e. their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13 ray
Within the framework of generalized noncontextuality, we introduce a general technique for systematically deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many measurements, each of which has
Measurement scenarios containing events with relations of exclusivity represented by pentagons, heptagons, nonagons, etc., or their complements are the only ones in which quantum probabilities cannot be described classically. Interestingly, quantum t
The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurement
Given two random variables $X$ and $Y$, an operational approach is undertaken to quantify the ``leakage of information from $X$ to $Y$. The resulting measure $mathcal{L}(X !! to !! Y)$ is called emph{maximal leakage}, and is defined as the multiplica