ترغب بنشر مسار تعليمي؟ اضغط هنا

Fulde-Ferrell-Larkin-Ovchinnikov pairing as leading instability on the square lattice

109   0   0.0 ( 0 )
 نشر من قبل Jan Gukelberger
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study attractively interacting spin-1/2 fermions on the square lattice subject to a spin population imbalance. Using unbiased diagrammatic Monte Carlo simulations we find an extended region in the parameter space where the Fermi liquid is unstable towards formation of Cooper pairs with non-zero center-of-mass momentum, known as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. In contrast to earlier mean-field and quasi-classical studies we provide quantitative and well-controlled predictions on the existence and location of the relevant Fermi-liquid instabilities. The highest temperature where the FFLO instability can be observed is about half of the superfluid transition temperature in the unpolarized system.



قيم البحث

اقرأ أيضاً

80 - M. Houzet , V. P. Mineev 2007
We develop the Ginzburg-Landau theory of the vortex lattice in clean isotropic three-dimensional superconductors at large Maki parameter, when inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state is favored. We show that diamagnetic superfluid curren ts mainly come from paramagnetic interaction of electron spins with local magnetic field, and not from kinetic energy response to the external field as usual. We find that the stable vortex lattice keeps its triangular structure as in usual Abrikosov mixed state, while the internal magnetic field acquires components perpendicular to applied magnetic field. Experimental possibilities related to this prediction are discussed.
121 - F. Yang , M. W. Wu 2017
We show that in the presence of magnetic field, two superconducting phases with the center-of-mass momentum of Cooper pair parallel to the magnetic field are induced in spin-orbit-coupled superconductor Li$_2$Pd$_3$B. Specifically, at small magnetic field, the center-of-mass momentum is induced due to the energy-spectrum distortion and no unpairing region with vanishing singlet correlation appears. We refer to this superconducting state as the drift-BCS state. By further increasing the magnetic field, the superconducting state falls into the Fulde-Ferrell-Larkin-Ovchinnikov state with the emergence of the unpairing regions. The observed abrupt enhancement of the center-of-mass momenta and suppression on the order parameters during the crossover indicate the first-order phase transition. Enhanced Pauli limit and hence enlarged magnetic-field regime of the Fulde-Ferrell-Larkin-Ovchinnikov state, due to the spin-flip terms of the spin-orbit coupling, are revealed. We also address the triplet correlations induced by the spin-orbit coupling, and show that the Cooper-pair spin polarizations, generated by the magnetic field and center-of-mass momentum with the triplet correlations, exhibit totally different magnetic-field dependences between the drift-BCS and Fulde-Ferrell-Larkin-Ovchinnikov states.
225 - Longhua Jiang , Jinwu Ye 2007
Starting from the Ginzburg-Landau free energy describing the normal state to Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state transition, we evaluate the free energy of seven most common lattice structures such as stripe, square, triangular,Simple Cubic (SC), Face centered Cubic (FCC),Body centered Cubic (BCC) and Quasi-crystal (QC). We find that the stripe phase which is the original LO state, is the most stable phase. This result maybe relevant to the detection of LOFF state in some heavy fermion compounds and the pairing lattice structure of fermions with unequal populations in the BCS side of Feshbach resonance in ultra-cold atoms.
The Higgs mode associated with amplitude fluctuations of the superconducting gap in uniform superconductors usually is heavy, which makes its excitation and detection difficult. We report on the existence of a gapless Higgs mode in the Fulde-Ferrell- Larkin-Ovchinnikov states. This feature is originated from the Goldstone mode associated with the translation symmetry breaking. The existence of the gapless Higgs mode is demonstrated by using both a phenomenological model and microscopic Bardeen-Cooper-Schrieffer (BCS) theory. The gapless Higgs mode can avoid the decay into other low energy excitations, which renders it stable and detectable.
296 - J. Kajala , F. Massel , P. Torma 2011
We consider a two-component Fermi gas in the presence of spin imbalance, modeling the system in terms of a one-dimensional attractive Hubbard Hamiltonian initially in the presence of a confining trap potential. With the aid of the time-evolving block decimation method, we investigate the dynamics of the initial state when the trap is switched off. We show that the dynamics of a gas initially in the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state is decomposed into the independent expansion of two fluids, namely the paired and the unpaired particles. In particular, the expansion velocity of the unpaired cloud is shown to be directly related to the FFLO momentum. This provides an unambiguous signature of the FFLO state in a remarkably simple way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا