ﻻ يوجد ملخص باللغة العربية
Cuprous oxide (Cu2O) films from 25 nm to 1500 nm were electrodeposited on n-Si(100) and Ni/n-Si(100) substrates from aqueous solution at room temperature. X-ray diffraction and transmission electron microscopy imaging show that the Cu2O structure and morphology is strongly affected by the substrate choice, with V shape and U shape columnar growth on n-Si(100) and Ni/n-Si(100), respectively. Atomic force microscopy reveals the presence of rounded grains at the surface in both cases. Anomalous and normal roughening are observed in films grown on n-Si and Ni, respectively, but estimates of scaling exponents are not conclusive. On the other hand, the distributions of local heights, roughness, and extremal heights show good agreement with those of the fourth order linear stochastic equation of Mullins and Herring (MH). Thus, surface dynamics in both systems is dominated by diffusion of adsorbed molecules, with no large scale effect of possible inhomogeneities in mass flux from the solution or in reaction and adsorption rates. In growth on n-Si substrates, the noise amplitude of the MH equation increases in time as t^{0.8}, while the coefficient of the curvature-related term is time-independent. Step edge energy barriers restrict the mass flux across grain boundaries, thus a broad size distribution of initial grains leads to coarsening of the larger ones. This explains their V shape in the thickest films and establishes a connection with the anomalous roughening. These effects are reduced in films grown on Ni/n-Si, which initially have much larger grains with narrower size distributions and, consequently, smaller fluctuations in coarse grained growth rates.
A microscopic model of the effect of unbinding in diffusion limited aggregation based on a cellular automata approach is presented. The geometry resembles electrochemical deposition - ``ions diffuse at random from the top of a container until encount
The application of stress to multiphase solid-liquid systems often results in morphological instabilities. Here we propose a solid-solid phase transformation model for roughening instability in the interface between two porous materials with differen
Fluids in porous media are commonly studied with analytical or simulation methods, usually assuming that the host medium is rigid. By evaluating the substrates response (relaxation) to the presence of the fluid we assess the error inherent in that as
High temperature thermal transport in insulators has been conjectured to be subject to a Planckian bound on the transport lifetime $tau gtrsim tau_text{Pl} equiv hbar/(k_B T)$, despite phonon dynamics being entirely classical at these temperatures. W
We study the phenomenon of super-roughening found on surfaces growing on disordered substrates. We consider a one-dimensional version of the problem for which the pure, ordered model exhibits a roughening phase transition. Extensive numerical simulat