ترغب بنشر مسار تعليمي؟ اضغط هنا

The current evaluation of Vud

99   0   0.0 ( 0 )
 نشر من قبل John Hardy
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Vud element of the Cabibbo-Kobayashi-Maskawa matrix can be determined from several different experimental approaches: either 0+-to-0+ superallowed nuclear beta decays, neutron decay, nuclear mirror decays, or pion beta decay. Currently all give consistent results but, because the nuclear superallowed value has an uncertainty at least a factor of seven less than all other results, it dominates the result. A new survey of world superallowed-decay data establishes the Ft values of 14 separate superallowed transitions to a precision of order 0.1% or better; and all 14 are statistically consistent with one another. This very robust data set yields the result Vud = 0.97417(21), the value we recommend.



قيم البحث

اقرأ أيضاً

135 - I. S. Towner 1998
The value of the $V_{ud}$ matrix element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix can be derived from nuclear superallowed beta decays, neutron decay, and pion beta decay. We survey current world data for all three. Today, the most precise value of $V_{ud}$ comes from the nuclear decays; however, the precision is limited not by experimental error but by the estimated uncertainty in theoretical corrections. The neutron data are approximately a factor of four poorer in precision but this could change dramatically in the near future as planned experiments come to fruition. The nuclear result (and the most recent of the neutron decay results) differ at the 98% confidence level from the unitarity condition for the CKM matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.
131 - Dan Melconian 2011
Some recent work in nuclear beta decay related to the value of |Vud| is described along with some near-term goals for future measurements.
225 - H.Fonvieille 2020
Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure, and measurements of these observables are still scarce. Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1 setup at the Mainz Microtron by studying the $e p to e p gamma$ reaction. The article focuses on selected aspects of the analysis. Method: The experiment extracted the $P_{LL} -P_{TT} / epsilon$ and $P_{LT}$ structure functions, as well as the electric and magnetic GPs of the proton, at three new values of the four-momentum transfer squared $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$. Results: We emphasize the importance of the calibration of experimental parameters. The behavior of the measured $e p to e p gamma$ cross section is presented and compared to the theory. A detailed investigation of the polarizability fits reveals part of their complexity, in connection with the higher-order terms of the low-energy expansion. Conclusions: The presented aspects are elements which contribute to minimize the systematic uncertainties and improve the precision of the physics results.
We investigate the measurement of the sixth order cumulant and its ratio to the second order cumulant ($C_6/C_2$) in relativistic heavy-ion collisions. The influence of statistics and different methods of centrality bin width correction on $C_6/C_2$ of net-proton multiplicity distributions is demonstrated. There is no satisfactory method to extract $C_6/C_2$ with the current statistics recorded at lower energies by STAR at RHIC. With statistics comparable to the expected statistics at the planned future RHIC Beam Energy Scan II (BES II), no energy dependence of $C_6/C_2$ is observed in central collisions using the UrQMD model. We find if the transition signal is as strong as predicted by the PQM model, then it is hopefully observed at the upcoming RHIC BES II.
How the bulk of the Universes visible mass emerges and how it is manifest in the existence and properties of hadrons are profound questions that probe into the heart of strongly interacting matter. Paradoxically, the lightest pseudoscalar mesons appe ar to be the key to the further understanding of the emergent mass and structure mechanisms. These mesons, namely the pion and kaon, are the Nambu-Goldstone boson modes of QCD. Unravelling their partonic structure and the interplay between emergent and Higgs-boson mass mechanisms is a common goal of three interdependent approaches -- continuum QCD phenomenology, lattice-regularised QCD, and the global analysis of parton distributions -- linked to experimental measurements of hadron structure. Experimentally, the foreseen electron-ion collider will enable a revolution in our ability to study pion and kaon structure, accessed by scattering from the meson cloud of the proton through the Sullivan process. With the goal of enabling a suite of measurements that can address these questions, we examine key reactions to identify the critical detector system requirements needed to map tagged pion and kaon cross sections over a wide range of kinematics. The excellent prospects for extracting pion structure function and form factor data are shown, and similar prospects for kaon structure are discussed in the context of a worldwide programme. Successful completion of the programme outlined herein will deliver deep, far-reaching insights into the emergence of pions and kaons, their properties, and their role as QCDs Goldstone boson modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا