ﻻ يوجد ملخص باللغة العربية
We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_mathrm{n} = -0.21 pm 1.82 times10^{-26}$ $e$cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of $3.0 times10^{-26}$ $e$cm (90% CL) or $ 3.6 times10^{-26}$ $e$cm (95% CL). This paper is dedicated by the remaining authors to the memory of Prof. J. Michael Pendlebury.
An experimental search for an electric-dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin (ILL), Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting
Novel experimental techniques are required to make the next big leap in neutron electric dipole moment experimental sensitivity, both in terms of statistics and systematic error control. The nEDM experiment at the Spallation Neutron Source (nEDM@SNS)
The Authors reply to the Comment of Golub and Lamoreaux. The experimental limit on the neutron electric dipole moment remains unchanged from that previously announced.
A permanent electric dipole moment of fundamental spin-1/2 particles violates both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity (CP) symmetry since there is no sign of CPT-violation. The search for a neutron electric dip
Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus