ترغب بنشر مسار تعليمي؟ اضغط هنا

Cool Core Clusters from Cosmological Simulations

122   0   0.0 ( 0 )
 نشر من قبل Elena Rasia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core (CC) and non-cool-core (NCC) clusters. Our simulations include the effects of stellar and AGN feedback and are based on an improved version of the smoothed particle hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, the primary diagnostic we used to classify the degree of cool-coreness of clusters, and on the iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of cool-core systems, to nearly flat core isentropic profiles, characteristic of non-cool-core systems. Using observational criteria to distinguish between the two classes of objects, we find that they occur in similar proportions in both simulations and in observations. Furthermore, we also find that simulated cool-core clusters have profiles of iron abundance that are steeper than those of NCC clusters, which is also in agreement with observational results. We show that the capability of our simulations to generate a realistic cool-core structure in the cluster population is due to AGN feedback and artificial thermal diffusion: their combined action allows us to naturally distribute the energy extracted from super-massive black holes and to compensate for the radiative losses of low-entropy gas with short cooling time residing in the cluster core.



قيم البحث

اقرأ أيضاً

209 - Joana S. Santos 2010
Cool-core clusters are characterized by strong surface brightness peaks in the X-ray emission from the Intra Cluster Medium (ICM). This phenomenon is associated with complex physics in the ICM and has been a subject of intense debate and investigatio n in recent years. In order to quantify the evolution in the cool-core cluster population, we robustly measure the cool-core strength in a local, representative cluster sample, and in the largest sample of high-redshift clusters available to date. We use high-resolution Chandra data of three representative cluster samples spanning different redshift ranges: (i) the local sample from the 400 SD survey with median z = 0.08, (ii) the high redshift sample from the 400 SD Survey with median z=0.59, and (iii) 15 clusters drawn from the RDCS and the WARPS, with median z = 0.83. Our analysis is based on the measurement of the surface brightness concentration, c_SB, which allows us to characterize the cool-core strength in low signal-to-noise data. We also obtain gas density profiles to derive cluster central cooling times and entropy. In addition to the X-ray analysis, we search for radio counterparts associated with the cluster cores. We find a statistically significant difference in the c_SB distributions of the two high-z samples, pointing towards a lack of concentrated clusters in the 400 SD high-z sample. Taking this into account, we confirm a negative evolution in the fraction of cool-core clusters with redshift, in particular for very strong cool-cores. This result is validated by the central entropy and central cooling time, which show strong anti-correlations with c_SB. However, the amount of evolution is significantly smaller than previously claimed, leaving room for a large population of well formed cool-cores at z~1.
142 - J.S. Sanders 2009
We examine deep XMM-Newton Reflection Grating Spectrometer (RGS) spectra from the cores of three X-ray bright cool core galaxy clusters, Abell 262, Abell 3581 and HCG 62. Each of the RGS spectra show Fe XVII emission lines indicating the presence of gas around 0.5 keV. There is no evidence for O VII emission which would imply gas at still cooler temperatures. The range in detected gas temperature in these objects is a factor of 3.7, 5.6 and 2 for Abell 262, Abell 3581 and HCG 62, respectively. The coolest detected gas only has a volume filling fraction of 6 and 3 per cent for Abell 262 and Abell 3581, but is likely to be volume filling in HCG 62. Chandra spatially resolved spectroscopy confirms the low volume filling fractions of the cool gas in Abell 262 and Abell 3581, indicating this cool gas exists as cold blobs. Any volume heating mechanism aiming to prevent cooling would overheat the surroundings of the cool gas by a factor of 4. If the gas is radiatively cooling below 0.5 keV, it is cooling at a rate at least an order of magnitude below that at higher temperatures in Abell 262 and Abell 3581 and two-orders of magnitude lower in HCG 62. The gas may be cooling non-radiatively through mixing in these cool blobs, where the energy released by cooling is emitted in the infrared. We find very good agreement between smooth particle inference modelling of the cluster and conventional spectral fitting. Comparing the temperature distribution from this analysis with that expected in a cooling flow, there appears to be a even larger break below 0.5 keV as compared with previous empirical descriptions of the deviations of cooling flow models.
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil e we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes an overestimate of the star formation and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
Studies of cluster mass and velocity anisotropy profiles are useful tests of dark matter models, and of the assembly history of clusters of galaxies. These studies might be affected by unknown systematics caused by projection effects. We aim at testi ng observational methods for the determination of mass and velocity anisotropy profiles of clusters of galaxies. Particularly, we focus on the MAMPOSSt technique (Mamon et al. 2013). We use results from two semi-analytic models of galaxy formation coupled with high-resolution N-body cosmological simulations, the catalog of De Lucia & Blaizot (2007) and the FIRE catalog based on the new GAlaxy Evolution and Assembly model. We test the reliability of the Jeans equation in recovering the true mass profile when full projected phase-space information is available. We examine the reliability of the MAMPOSSt method in estimating the true mass and velocity anisotropy profiles of the simulated halos when only projected phase-space information is available, as in observations. The spherical Jeans equation provides a reliable tool for the determination of cluster mass profiles, also for subsamples of tracers separated by galaxy color. Results are equally good for prolate and oblate clusters. Using only projected phase-space information, MAMPOSSt provides estimates of the mass profile with a standard deviation of 35-69 %, and a negative bias of 7-17 %, nearly independent of radius, and that we attribute to the presence of interlopers in the projected samples. The bias changes sign, that is, the mass is over-estimated, for prolate clusters with their major axis aligned along the line-of-sight. MAMPOSSt measures the velocity anisotropy profiles accurately in the inner cluster regions, with a slight overestimate in the outer regions, both for the whole sample of observationally-identified cluster members and separately for red and blue galaxies.
X-ray astronomers often divide galaxy clusters into two classes: cool core (CC) and non-cool core (NCC) objects. The origin of this dichotomy has been the subject of debate in recent years, between evolutionary models (where clusters can evolve from CC to NCC, mainly through mergers) and primordial models (where the state of the cluster is fixed ab initio by early mergers or pre-heating). We found that in a well-defined sample (clusters in the GMRT Radio halo survey with available Chandra or XMM-Newton data), none of the objects hosting a giant radio halo can be classified as a cool core. This result suggests that the main mechanisms which can start a large scale synchrotron emission (most likely mergers) are the same that can destroy CC and therefore strongly supports evolutionary models of the CC-NCC dichotomy. Moreover combining the number of objects in the CC and NCC state with the number of objects with and without a radio-halo, we estimated that the time scale over which a NCC cluster relaxes to the CC state, should be larger than the typical life-time of radio-halos and likely shorter than about 3 Gyr. This suggests that NCC transform into CC more rapidly than predicted from the cooling time, which is about 10 Gyr in NCC systems, allowing the possibility of a cyclical evolution between the CC and NCC states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا