ﻻ يوجد ملخص باللغة العربية
We construct a family of many-body wave functions to study the many-body localization phase transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the configurations are chosen from the Gibbs weights of a classical spin glass model, known as the Random Energy Model, multiplied by a random sign structure to represent a highly excited state. These wave functions show a phase transition into an MBL phase. In addition, we see three regimes of entanglement scaling with subsystem size: scaling with entanglement corresponding to an infinite temperature thermal phase, constant scaling, and a sub-extensive scaling between these limits. Near the phase transition point, the fluctuations of the Renyi entropies are non-Gaussian. We find that Renyi entropies with different Renyi index transition into the MBL phase at different points and have different scaling behavior, suggesting a multifractal behavior.
We theoretically study transport properties in one-dimensional interacting quasiperiodic systems at infinite temperature. We compare and contrast the dynamical transport properties across the many-body localization (MBL) transition in quasiperiodic a
We theoretically study correlations present deep in the spectrum of many-body-localized systems. An exact analytical expression for the spectral form factor of Poisson spectra can be obtained and is shown to agree well with numerical results on two m
Polynomially filtered exact diagonalization method (POLFED) for large sparse matrices is introduced. The algorithm finds an optimal basis of a subspace spanned by eigenvectors with eigenvalues close to a specified energy target by a spectral transfor
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for di
The notion of Thouless energy plays a central role in the theory of Anderson localization. We investigate the scaling of Thouless energy across the many-body localization (MBL) transition in a Floquet model. We use a combination of methods that are r