ﻻ يوجد ملخص باللغة العربية
We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burgers type equations, convective Cahn-Hilliard equation, generalized Kuramoto-Sivashinsky equation and KdV type equations, we establish the following common scenario: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similarly to the case when the equation does not involve convective term. This kind of result has been previously known for the case of Burgers type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.
We study initial boundary value problems for the convective Cahn-Hilliard equation $Dt u +px^4u +upx u+px^2(|u|^pu)=0$. It is well-known that without the convective term, the solutions of this equation may blow up in finite time for any $p>0$. In con
We introduce and analyze the nonlocal variants of two Cahn-Hilliard type equations with reaction terms. The first one is the so-called Cahn-Hilliard-Oono equation which models, for instance, pattern formation in diblock-copolymers as well as in binar
We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and the critical regime. After general considerations on Palais-Smale sequences we determine precise blow up rates for subcritical solutions: in particular
Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit univers
These notes are devoted to the problem of finite-dimensional reduction for parabolic PDEs. We give a detailed exposition of the classical theory of inertial manifolds as well as various attempts to generalize it based on the so-called Mane projection