Testing particle trapping in transition disks with ALMA


الملخص بالإنكليزية

We present new Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at 336GHz of two transition disks, SR21 and HD135344B. In combination with previous ALMA observations from Cycle 0 at 689GHz, we compare the visibility profiles at the two frequencies and calculate the spectral index ($alpha_{rm{mm}}$). The observations of SR21 show a clear shift in the visibility nulls, indicating radial variations of the inner edge of the cavity at the two wavelengths. Notable radial variations of the spectral index are also detected for SR21 with values of $alpha_{rm{mm}}{sim}3.8-4.2$ in the inner region ($r<35$ AU) and $alpha_{rm{mm}}{sim}2.6-3.0$ outside. An axisymmetric ring (which we call the ring model) or a ring with the addition of an azimuthal Gaussian profile, for mimicking a vortex structure (which we call the vortex model), is assumed for fitting the disk morphology. For SR21, the ring model better fits the emission at 336GHz, conversely the vortex model better fits the 689GHz emission. For HD135344B, neither a significant shift in the null of the visibilities nor radial variations of $alpha_{rm{mm}}$ are detected. Furthermore, for HD135344B, the vortex model fits both frequencies better than the ring model. However, the azimuthal extent of the vortex increases with wavelength, contrary to model predictions for particle trapping by anticyclonic vortices. For both disks, the azimuthal variations of $alpha_{rm{mm}}$ remain uncertain to confirm azimuthal trapping. The comparison of the current data with a generic model of dust evolution that includes planet-disk interaction suggests that particles in the outer disk of SR21 have grown to millimetre sizes and have accumulated in a radial pressure bump, whereas with the current resolution there is not clear evidence of radial trapping in HD135344B, although it cannot be excluded either.

تحميل البحث