ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal insulator transition and magnetotransport anomalies in perovskite SrIr0.5Ru0.5O3 thin films

128   0   0.0 ( 0 )
 نشر من قبل Abhijit Biswas
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the nature of transport and magnetic properties in SrIr0.5Ru0.5O3, (SIRO) which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on various substrates (SrTiO3 (001), (LaAlO3)0.3(Sr2TaAlO6)0.7 (001) and LaAlO3 (001)). We observed systematic variation of underlying substrate dependent metal-to-insulator transition temperatures at 80 K on SrTiO3, 90 K on (LaAlO3)0.3(Sr2TaAlO6)0.7 and 100 K on LaAlO3) in resistivity. Resistivity in the metallic region follows a T3/2 power law; whereas insulating nature at low T is due to the localization effect. Magnetoresistance (MR) measurement of SIRO on SrTiO3 (001) shows negative MR upto 25 K and positive MR above 25 K, with negative MR proportional to B1/2 and positive MR proportional to B2; consistent with the localized-to-normal transport crossover dynamics. Furthermore, observed spin glass like behavior of SIRO on SrTiO3 (001) in the localized regime, validates the hypothesis that (Anderson) localization favors glassy ordering. These remarkable features provide a promising approach for future applications and of fundamental interest in oxide thin films.



قيم البحث

اقرأ أيضاً

We discuss Mott insulating and metallic phases of a model with $e_g$ orbital degeneracy to understand physics of Mn perovskite compounds. Quantum Monte Carlo and Lanczos diagonalization results are discussed in this model. To reproduce experimental r esults on charge gap and Jahn-Teller distortions, we show that a synergy between the strong correlation effects and the Jahn-Teller coupling is important. The incoherent charge dynamics and strong charge fluctuations are characteristic of the metallic phase accompanied with critical enhancement of short-ranged orbital correlation near the insulator.
Electronic transport has been investigated for strong spin-orbit coupled perovskite SrIrO3 thin films grown at various substrate temperatures. The electronic transport of the SrIrO3 films is found to be very sensitive to the growth parameters; in par ticular, the film can either be a metal or an insulator depending upon the substrate growth temperature. While all the metallic films show unusual sublinear temperature dependent non-Fermi liquid behaviors in resistivity, the insulating film grown at a higher temperature stands out for its inhomogeneous Ir distribution, as analyzed by secondary ion mass spectrometry. This observation demonstrates that the inhomogeneous distribution of cations can be one of the fundamental factors in affecting the electronic transport in heavy element based oxide films and heterostructures.
185 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv ity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
162 - D. Meyers , S. Middey , M. Kareev 2013
Ultrathin epitaxial films of EuNiO3 were grown on a series of substrates traversing highly compressive (- 2.4%) to highly tensile (2.5%) lattice mismatch. X-ray diffraction measurements showed the expected c-lattice parameter shift for compressive st rain, but no detectable shift for tensilely strained substrates, while reciprocal space mapping confirmed the tensile strained film maintained epitaxial coherence. Transport measurements showed a successively (from tensile to compressive) lower resistance and a complete suppression of the metalinsulator transition at highly compressive lattice mismatch. Corroborating these findings, X-ray absorption spectroscopy measurements revealed a strong multiplet splitting in the tensile samples that progressively weakens with increasing compressive strain that, combined with cluster calculations, showed enhanced covalence between Ni-d and O-p orbitals leads to the metallic state.
We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (~ 150 ps) to fast (< 70 ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing to spatially encode magnetic information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا