ترغب بنشر مسار تعليمي؟ اضغط هنا

Fingerprints of giant planets in the photospheres of Herbig stars

100   0   0.0 ( 0 )
 نشر من قبل Mihkel Kama
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Around 2% of all A stars have photospheres depleted in refractory elements. This is hypothesized to arise from a preferential accretion of gas rather than dust, but the specific processes and the origin of the material -- circum- or interstellar -- are not known. The same depletion is seen in 30% of young, disk-hosting Herbig Ae/Be stars. We investigate whether the chemical peculiarity originates in a circumstellar disk. Using a sample of systems for which both the stellar abundances and the protoplanetary disk structure are known, we find that stars hosting warm, flaring group I disks typically have Fe, Mg and Si depletions of 0.5 dex compared to the solar-like abundances of stars hosting cold, flat group II disks. The volatile, C and O, abundances in both sets are identical. Group I disks are generally transitional, having radial cavities depleted in millimetre-sized dust grains, while those of group II are usually not. Thus we propose that the depletion of heavy elements emerges as Jupiter-like planets block the accretion of part of the dust, while gas continues to flow towards the central star. We calculate gas to dust ratios for the accreted material and find values consistent with models of disk clearing by planets. Our results suggest that giant planets of ~0.1 to 10 M_Jup are hiding in at least 30% of Herbig Ae/Be disks.



قيم البحث

اقرأ أيضاً

We present high resolution (R = 100,000) L-band spectroscopy of 11 Herbig AeBe stars with circumstellar disks. The observations were obtained with the VLT/CRIRES to detect hot water and hydroxyl radical emission lines previously detected in disks aro und T Tauri stars. OH emission lines are detected towards 4 disks. The OH P4.5 (1+,1-) doublet is spectrally resolved as well as the velocity profile of each component of the doublet. Its characteristic double-peak profile demonstrates that the gas is in Keplerian rotation and points to an emitting region extending out to ~ 15-30 AU. The OH, emission correlates with disk geometry as it is mostly detected towards flaring disks. None of the Herbig stars analyzed here show evidence of hot water vapor at a sensitivity similar to that of the OH lines. The non-detection of hot water vapor emission indicates that the atmosphere of disks around Herbig AeBe stars are depleted of water molecules. Assuming LTE and optically thin emission we derive a lower limit to the OH/H2O column density ratio > 1 - 25 in contrast to T Tauri disks for which the column density ratio is 0.3 -- 0.4.
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.5 and 14.1 mag at 1 separation. Follow-up o bservations of the 66 candidates with projected separation < 500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known Beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >5MJup planet beyond 80 AU, and <21% of debris disk stars have a >3MJup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly-imaged planets as d^2N/dMda ~ m^alpha a^beta, where m is planet mass and a is orbital semi-major axis (with a maximum value of amax). We find that beta < -0.8 and/or alpha > 1.7. Likewise, we find that beta < -0.8 and/or amax < 200 AU. If we ignore the Beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that < 20% of debris disk stars have a > 3MJup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation > 40 AU and planet masses > 3 MJup do not carve the central holes in these disks.
106 - L. Ghezzi , K. Cunha , V. V. Smith 2009
High-resolution (R = 143,000), high signal-to-noise (S/N = 700-1100) Gemini-S bHROS spectra have been analyzed in a search for 6Li in 5 stars which host extrasolar planets. The presence of detectable amounts of 6Li in these mature, solar-type stars i s a good monitor of accretion of planetary disk material, or solid bodies themselves, into the outer layers of the parent stars. Detailed profile-fitting of the Li I resonance doublet at lambda 6707.8 A reveals no detectable amounts of 6Li in any star in our sample. The list of stars analyzed includes HD 82943 for which 6Li has been previouly detected at the level of 6Li/7Li = 0.05 +/- 0.02. The typical limits in the derived isotopic fraction are 6Li/7Li <= 0.00-0.02. These upper limits constrain the amount of accreted material to less than ~ 0.02 to 0.5 Jovian masses. The presence of detectable amounts of 6Li would manifest itself as a red asymmetry in the Li I line-profile and the derived upper limits on such asymmetries are discussed in light of three-dimensional hydrodynamic model atmospheres, where convective motions also give rise to slight red asymmetries in line profiles.
73 - J. Philidet 2019
Stably stratified layers are present in stellar interiors (radiative zones) as well as planetary interiors - recent observations and theoretical studies of the Earths magnetic field seem to indicate the presence of a thin, stably stratified layer at the top of the liquid outer core. We present direct numerical simulations of this region, which is modelled as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. For strong magnetic fields, a super-rotating shear layer, rotating nearly 30% faster than the imposed rotation rate difference between the inner convective dynamo region and the outer boundary, is generated in the stably stratified region. In the Earth context, and contrary to what was previously believed, we show that this super-rotation may extend towards the Earth magnetostrophic regime if the density stratification is sufficiently large. The corresponding differential rotation triggers magnetohydrodynamic instabilities and waves in the stratified region, which feature growth rates comparable to the observed timescale for geomagnetic secular variations and jerks. In the stellar context, we perform a linear analysis which shows that similar instabilities are likely to arise, and we argue that it may play a role in explaining the observed magnetic dichotomy among intermediate-mass stars.
We seek to find the precursors of the Herbig Ae/Be stars in the solar vicinity within 500 pc from the Sun. We do this by creating an optically selected sample of intermediate mass T-Tauri stars (IMTT stars) here defined as stars of masses $1.5 M_{odo t}leq M_* leq 5 M_{odot}$ and spectral type between F and K3, from literature. We use literature optical photometry (0.4-1.25$mu$m) and distances determined from Gaia DR2 parallax measurements together with Kurucz stellar model spectra to place the stars in a HR-diagram. With Siess evolutionary tracks we identify intermediate mass T-Tauri stars from literature and derive masses and ages. We use Spitzer spectra to classify the disks around the stars into Meeus Group I and Group II disks based on their [F$_{30}$/F$_{13.5}$] spectral index. We also examine the 10$mu$m silicate dust grain emission and identify emission from Polycyclic Aromatic Hydrocarbons (PAH). From this we build a qualitative picture of the disks around the intermediate mass T-Tauri stars and compare this with available spatially resolved images at infrared and at sub-millimeter wavelengths to confirm our classification. We find 49 intermediate mass T-Tauri stars with infrared excess. The identified disks are similar to the older Herbig Ae/Be stars in disk geometries and silicate dust grain population. Spatially resolved images at infra-red and sub-mm wavelengths suggest gaps and spirals are also present around the younger precursors to the Herbig Ae/Be stars. Comparing the timescale of stellar evolution towards the main sequence and current models of protoplanetary disk evolution the similarity between Herbig Ae/Be stars and the intermediate mass T-Tauri stars points towards an evolution of Group I and Group II disks that are disconnected, and that they represent two different evolutionary paths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا