ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations

55   0   0.0 ( 0 )
 نشر من قبل Olivier Groussin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface, using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies and mechanical considerations. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 deg) are covered by a fine material and contain a few large ($>$10 m) and isolated boulders, ii) intermediate-slope terrains (20-45 deg) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from $<$1 m to 10 m for the majority of them, and iii) high-slope terrains (45-90 deg) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.



قيم البحث

اقرأ أيضاً

We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the OSIRIS instrument during the closest fly-by over the comet, which took place on 14 th February 2015 at a distance of {~} 6 km from the surface. Several images covering the 0{deg}-33{deg} phase angle range were acquired, and the spatial resolution achieved was 11 cm/pxl. The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40{%} between bright spots and sombre regions, and spectral slope variations up to 50{%}. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our dataset using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8{%}) and it has a high porosity value in the uppermost-layers (86{%}). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus.
130 - H. Rickman 2015
One of the main aims of the ESA Rosetta mission is to study the origin of the solar system by exploring comet 67P/Churyumov-Gerasimenko at close range. In this paper we discuss the origin and evolution of comet 67P/Churyumov-Gerasimenko in relation t o that of comets in general and in the framework of current solar system formation models. We use data from the OSIRIS scientific cameras as basic constraints. In particular, we discuss the overall bi-lobate shape and the presence of key geological features, such as layers and fractures. We also treat the problem of collisional evolution of comet nuclei by a particle-in-a-box calculation for an estimate of the probability of survival for 67P/Churyumov-Gerasimenko during the early epochs of the solar system. We argue that the two lobes of the 67P/Churyumov-Gerasimenko nucleus are derived from two distinct objects that have formed a contact binary via a gentle merger. The lobes are separate bodies, though sufficiently similar to have formed in the same environment. An estimate of the collisional rate in the primordial, trans-planetary disk shows that most comets of similar size to 67P/Churyumov-Gerasimenko are likely collisional fragments, although survival of primordial planetesimals cannot be excluded. A collisional origin of the contact binary is suggested, and the low bulk density of the aggregate and abundance of volatile species show that a very gentle merger must have occurred. We thus consider two main scenarios: the primordial accretion of planetesimals, and the re-accretion of fragments after an energetic impact onto a larger parent body. We point to the primordial signatures exhibited by 67P/Churyumov-Gerasimenko and other comet nuclei as critical tests of the collisional evolution.
We directly measure twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimate the minimum tensile strengths needed to support them against collapse under the comets gravity. We find extremely low strengths of around one Pa or less (one to five Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and implied previous collapse of another, suggests that they are prone to failure and that true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of 67Ps nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties with size, over the $sim10-100$ m range studied here, or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small (tens of km) body.
The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study o f a comet ever attempted are onboard Rosetta. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13$pm$0.01 in the HG system formalism and an absolute magnitude $H_v(1,1,0)$ = 15.74$pm$0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at $sim$ 290 nm that is possibly due to SO$_2$ ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3$^{circ}$--54$^{circ}$ phase angle range. The geometric albedo of the comet is 6.5$pm$0.2% at 649 nm, with local variations of up to $sim$ 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.
The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and er osion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits, and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur/Bes boundary during/after the perihelion passage, close to the area where exposed CO$_2$ and H$_2$O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit, and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا