ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted Whittaker models for metaplectic groups

125   0   0.0 ( 0 )
 نشر من قبل Sergey Lysenko
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Sergey Lysenko




اسأل ChatGPT حول البحث

Let G be a reductive group (over an algebraically closed field) equipped with the metaplectic data. In this paper we study the corresponding twisted Whittaker category for G. We construct and study a functor from the latter category to the corresponding category of factorizable sheaves. It plays the role of the restriction functor from the category of representations of the big quantum group to those of the graded small quantum group. We also prove an analog in our setting of the Lusztig-Steinberg tensor product theorem for quantum groups describing the semi-simple part of the Whittaker category as a module over the Hecke algebra.



قيم البحث

اقرأ أيضاً

In this paper we consider Iwahori Whittaker functions on $n$-fold metaplectic covers $widetilde{G}$ of $mathbf{G}(F)$ with $mathbf{G}$ a split reductive group over a non-archimedean local field $F$. For every element $phi$ of a basis of Iwahori Whitt aker functions, and for every $ginwidetilde{G}$, we evaluate $phi(g)$ by recurrence relations over the Weyl group using vector Demazure-Whittaker operators. Specializing to the case of $mathbf{G} = mathbf{GL}_r$, we exhibit a solvable lattice model whose partition function equals $phi(g)$. These models are of a new type associated with the quantum affine super group $U_q(widehat{mathfrak{gl}}(r|n))$. The recurrence relations on the representation theory side then correspond to solutions to Yang-Baxter equations for the lattice models. Remarkably, there is a bijection between the boundary data specifying the partition function and the data determining all values of the Whittaker functions.
We show that spherical Whittaker functions on an $n$-fold cover of the general linear group arise naturally from the quantum Fock space representation of $U_q(widehat{mathfrak{sl}}(n))$ introduced by Kashiwara, Miwa and Stern (KMS). We arrive at this connection by reconsidering solvable lattice models known as `metaplectic ice whose partition functions are metaplectic Whittaker functions. First, we show that a certain Hecke action on metaplectic Whittaker coinvariants agrees (up to twisting) with a Hecke action of Ginzburg, Reshetikhin, and Vasserot. This allows us to expand the framework of KMS by Drinfeld twisting to introduce Gauss sums into the quantum wedge, which are necessary for connections to metaplectic forms. Our main theorem interprets the row transfer matrices of this ice model as `half vertex operators on quantum Fock space that intertwine with the action of $U_q(widehat{mathfrak{sl}}(n))$. In the process, we introduce new symmetric functions termed textit{metaplectic symmetric functions} and explain how they relate to Whittaker functions on an $n$-fold metaplectic cover of GL$_r$. These resemble textit{LLT polynomials} introduced by Lascoux, Leclerc and Thibon; in fact the metaplectic symmetric functions are (up to twisting) specializations of textit{supersymmetric LLT polynomials} defined by Lam. Indeed Lam constructed families of symmetric functions from Heisenberg algebra actions on the Fock space commuting with the $U_q(widehat{mathfrak{sl}}(n))$-action. We explain that half vertex operators agree with Lams construction and this interpretation allows for many new identities for metaplectic symmetric and Whittaker functions, including Cauchy identities. While both metaplectic symmetric functions and LLT polynomials can be related to vertex operators on the $q$-Fock space, only metaplectic symmetric functions are connected to solvable lattice models.
We study the dimension of the space of Whittaker functionals for depth zero representations of covering groups. In particular, we determine such dimensions for arbitrary Brylinski-Deligne coverings of the general linear group. The results in the pape r are motivated by and compatible with the work of Howard and the second author, and earlier work by Blondel.
Let $F$ be either $mathbb{R}$ or a finite extension of $mathbb{Q}_p$, and let $G$ be a finite central extension of the group of $F$-points of a reductive group defined over $F$. Also let $pi$ be a smooth representation of $G$ (Frechet of moderate gro wth if $F=mathbb{R}$). For each nilpotent orbit $mathcal{O}$ we consider a certain Whittaker quotient $pi_{mathcal{O}}$ of $pi$. We define the Whittaker support WS$(pi)$ to be the set of maximal $mathcal{O}$ among those for which $pi_{mathcal{O}} eq 0$. In this paper we prove that all $mathcal{O}inmathrm{WS}(pi)$ are quasi-admissible nilpotent orbits, generalizing some of the results in [Moe96,JLS16]. If $F$ is $p$-adic and $pi$ is quasi-cuspidal then we show that all $mathcal{O}inmathrm{WS}(pi)$ are $F$-distinguished, i.e. do not intersect the Lie algebra of any proper Levi subgroup of $G$ defined over $F$. We also give an adaptation of our argument to automorphic representations, generalizing some results from [GRS03,Shen16,JLS16,Cai] and confirming some conjectures from [Ginz06]. Our methods are a synergy of the methods of the above-mentioned papers, and of our preceding paper [GGS17].
152 - Wen-Wei Li 2021
We stabilize the full Arthur-Selberg trace formula for the metaplectic covering of symplectic groups over a number field. This provides a decomposition of the invariant trace formula for metaplectic groups, which encodes information about the genuine $L^2$-automorphic spectrum, into a linear combination of stable trace formulas of products of split odd orthogonal groups via endoscopic transfer. By adapting the strategies of Arthur and Moeglin-Waldspurger from the linear case, the proof is built on a long induction process that mixes up local and global, geometric and spectral data. As a by-product, we also stabilize the local trace formula for metaplectic groups over any local field of characteristic zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا