ﻻ يوجد ملخص باللغة العربية
We propose a 2-Higgs doublet model where the symmetry is extended by $S_{3}otimes Z_{3}otimes Z_{3}^{prime }otimes Z_{14}$ and the field content is enlarged by extra $SU(2)_{L}$ singlet scalar fields. $S_3$ makes the model predictive and leads to viable fermion masses and mixing. The observed hierarchy of the quark masses arises from the $Z_{3}^{prime }$ and $Z_{14}$ symmetries. The light neutrino masses are generated through a type I seesaw mechanism with two heavy Majorana neutrinos. In the lepton sector we obtain mixing angles that are nearly tri-bi-maximal, in an excellent agreement with the observed lepton parameters. The vacuum expectation values required for the model are naturally obtained from the scalar potential, and we analyze the scalar sector properties further constraining the model through the $gamma gamma$ decay channel and the $T$ and $S$ parameters.
In the context of Composite Higgs Models we consider the realisation of an extended Higgs sector with two Higgs doublets arising as pseudo Nambu-Goldstone bosons from a $textrm{SO}(6) to textrm{SO}(4) times textrm{SO}(2)$ breaking. The properties of
In this paper we analyse in detail an $S_3$-symmetric three-Higgs-doublet model with a specific vacuum configuration. This analysis allows us to illustrate important features of models with several Higgs doublets, such as the possibility of having sp
Models with two or more scalar doublets with discrete or global symmetries can have vacua with vanishing vacuum expectation values in the bases where symmetries are imposed. If a suitable symmetry stabilises such vacua, these models may lead to inter
The light Higgs mass in the MSSM is highly constrained and is predicted to be close to M_Z which causes a tension between the LEP II Higgs mass bound 114 GeV and the natural electroweak symmetry breaking in the MSSM. The usual way to increase the lig
By extending the Standard Model with singlet-doublet fermions and triplet scalars, all odd under a new $Z_2$ symmetry, we introduce a radiative seesaw model that can simultaneously account for dark matter, explain the existence of neutrino masses and