ﻻ يوجد ملخص باللغة العربية
We establish Strichartz estimates in similarity coordinates for the radial wave equation in three spatial dimensions with a (time-dependent) self-similar potential. As an application we consider the critical wave equation and prove the asymptotic stability of the ODE blowup profile in the energy space.
We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturba
We study the hyperboloidal initial value problem for the one-dimensional wave equation perturbed by a smooth potential. We show that the evolution decomposes into a finite-dimensional spectral part and an infinite-dimensional radiation part. For the
We consider the wave equation with a focusing cubic nonlinearity in higher odd space dimensions without symmetry restrictions on the data. We prove that there exists an open set of initial data such that the corresponding solution exists in a backwar
We establish Strichartz estimates for the radial energy-critical wave equation in 5 dimensions in similarity coordinates. Using these, we prove the nonlinear asymptotic stability of the ODE blowup in the energy space.
We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius $rho > 0$, the manifold $mathbb{R}_+ times mathbb{R} / 2 pi rho mathbb{Z}$ equipped with the metric $g(r,theta) = dr^2 + r^2 dtheta^2$. Using