ﻻ يوجد ملخص باللغة العربية
The near ultraviolet photodissociation dynamics of silver atom rare gas dimers have been studied by velocity map imaging. AgRG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C <- X continuum leading to direct, near threshold dissociation generating Ag* (2P3/2) + RG (1S0) products. Images recorded at excitation wavelengths throughout the C <- X continuum, coupled with known atomic energy levels, permit determination of the ground X (2SIGMA+) state dissociation energies of 85.9 +/- 23.4 cm-1 (AgAr), 149.3 +/- 22.4 cm-1 (AgKr) and 256.3 +/- 16.0 cm-1 (AgXe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two photon level. These features yield an improved ground state dissociation energy for AgO of 15965 +/- 81 cm-1, which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag2.
Infrared spectra of Rg1,2 - C6H6 complexes (Rg = He, Ne, Ar) are observed in the region of the nu12 fundamental of C6H6 using a pulsed supersonic jet expansion and a tunable optical parametric oscillator laser source. The mixed trimer He - Ne - C6H6
We report experimental results on the diffractive imaging of three-dimensionally aligned 2,5-diiodothiophene molecules. The molecules were aligned by chirped near-infrared laser pulses, and their structure was probed at a photon energy of 9.5 keV ($l
We outline a method to slow paramagnetic atoms or molecules using pulsed magnetic fields. We also discuss the possibility of producing trapped particles by adiabatic deceleration of a magnetic trap. We present numerical simulation results for the slowing and trapping of molecular oxygen.
Implantation and subsequent behaviour of heavy noble gases (Ar, Kr, Xe) in few-layer graphene sheets and in nanodiamonds is studied both using computational methods and experimentally using X-ray absorption spectroscopy. X-ray absorption spectroscopy
We first give a short review of the ``local-current approximation (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-