We introduce a new optical tool - a two-dimensional optical centrifuge, capable of aligning molecules in extreme rotational states. Unlike the conventional centrifuge, which confines the molecules in the plane of their rotation, its two-dimensional version aligns the molecules along a well-defined axis, similarly to the effect of a single linearly polarized laser pulse, but at a much higher level of rotational excitation. The increased robustness of ultra-high rotational states with respect to collisions results in a longer life time of the created alignment in dense media, offering new possibilities for studying and utilizing aligned molecular ensembles under ambient conditions.