ﻻ يوجد ملخص باللغة العربية
Based on its energy-dependent morphology the initially unidentified very high energy (VHE; E>100 GeV) gamma-ray source HESS J1303-631 was recently associated with the pulsar PSR J1301-6305. Subsequent detection of X-ray and GeV counterparts also supports the identification of the H.E.S.S. source as evolved pulsar wind nebula (PWN). We report here on recent radio observations of the PSR J1301-6305 field of view (FOV) with ATCA dedicated to search for the radio counterpart of this evolved PWN. Observations at 5.5 GHz and 7.5 GHz do not reveal any extended emission associated with the pulsar. The analysis of the archival 1.384 GHz and 2.368 GHz data also does not show any significant emission. The 1.384 GHz data reveal a hint of an extended shell-like emission in the PSR J1301-6305 FOV which might be a supernova remnant. We discuss the implications of the non-detection at radio wavelengths on the nature and evolution of the PWN as well as the possibility of the SNR candidate being the birth place of PSR J1301-6305.
Radio observations of the region surrounding PSR J1301-6305 at 5.5 GHz and 7.5 GHz were conducted with ATCA on September 5th, 2013. They were dedicated to the search of the radio counterpart of the evolved pulsar wind nebula HESS J1303-631, detected
The previously unidentified very high-energy (VHE; E > 100 GeV) gamma-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array. Archival data from the XMM-Newton X-ray satellite and
We present a new and deep analysis of the pulsar wind nebula (PWN) HESS,J1825--137 with a comprehensive data set of almost 400 hours taken with the H.E.S.S. array between 2004 and 2016. The large amount of data, and the inclusion of low-threshold H.E
The results from a systematic study of eleven pulsar wind nebulae with a torus structure observed with the Chandra X-ray observatory are presented. A significant observational correlation is found between the radius of the tori, r, and the spin-down
The pulsar wind nebula (PWN) HESS~J1825-137, known to exhibit strong energy dependent morphology, was discovered by HESS in 2005. Powered by the pulsar PSR~B1823-13, the TeV gamma-ray emitting nebula is significantly offset from the pulsar. The asymm