ترغب بنشر مسار تعليمي؟ اضغط هنا

A proposed chemical scheme for HCCO formation in cold dense clouds

65   0   0.0 ( 0 )
 نشر من قبل Valentine Wakelam
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ketenyl radical (HCCO) has recently been discovered in two cold dense clouds with a non-negligible abundance of a few 1e-11 (compared to H2) (Agundez et al. 2015). Until now, no chemical network has been able to reproduce this observation. We propose here a chemical scheme that can reproduce HCCO abundances together with HCO, H2CCO and CH3CHO in the dark clouds Lupus-1A and L486. The main formation pathway for HCCO is the OH + CCH -> HCCO + H reaction as suggested by Agundez et al. (2015) but with a much larger rate coefficient than used in current models. Since this reaction has never been studied experimentally or theoretically, this larger value is based on a comparison with other similar systems.



قيم البحث

اقرأ أيضاً

We investigated the chemical evolution of HC3N in six dense molecular clouds, using archival available data from the Herschel infrared Galactic Plane Survey (Hi-GAL) and the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). Radio sky survey s of the Multi-Array Galactic Plane Imaging Survey (MAGPIS) and the Sydney University Molonglo Sky Survey (SUMSS) indicate these dense molecular clouds are associated with ultracompact HII (UCHII) regions and/or classical HII regions. We find that in dense molecular clouds associated with normal classical HII regions, the abundance of HC3N begins to decrease or reaches a plateau when the dust temperature gets hot. This implies UV photons could destroy the molecule of HC3N. On the other hand, in the other dense molecular clouds associated with UCHII regions, we find the abundance of HC3N increases with dust temperature monotonously, implying HC3N prefers to be formed in warm gas. We also find that the spectra of HC3N (10-9) in G12.804-0.199 and RCW 97 show wing emissions, and the abundance of HC3N in these two regions increases with its nonthermal velocity width, indicating HC3N might be a shock origin species. We further investigated the evolutionary trend of N(N2H+)/N(HC3N) column density ratio, and found this ratio could be used as a chemical evolutionary indicator of cloud evolution after the massive star formation is started.
To deepen our understanding of the chemical properties of the Planck Galactic Cold Clump (PGCC) G168.72-15.48, we performed observations of nine molecular species, namely, ce{c-C3H}, ce{H2CO}, ce{HC5N}, ce{HC7N}, ce{SO}, ce{CCH}, ce{N2H+}, ce{CH3OH}, and ce{CH3CCH}, toward two dense cores in PGCC G168.72-15.48 using the Tianma Radio Telescope and Purple Mountain Observatory Telescope. We detected ce{c-C3H}, ce{H2CO}, ce{HC5N}, ce{N2H+}, ce{CCH}, and ce{CH3OH} in both G168-H1 and G168-H2 cores, whereas ce{HC7N} and ce{CH3CCH} were detected only in G168-H1 and SO was detected only in G168-H2. Mapping observations reveal that the ce{CCH}, ce{N2H+}, ce{CH3OH}, and ce{CH3CCH} emissions are well coupled with the dust emission in G168-H1. Additionally, ce{N2H+} exhibits an exceptionally weak emission in the denser and more evolved G168-H2 core, which may be attributed to the ce{N2H+} depletion. We suggest that the ce{N2H+} depletion in G168-H2 is dominated by ce{N2} depletion, rather than the destruction by CO. The local thermodynamic equilibrium calculations indicate that the carbon-chain molecules of ce{CCH}, ce{HC5N}, ce{HC7N}, and ce{CH3CCH} are more abundant in the younger G168-H1 core. We found that starless core G168-H1 may have the properties of cold dark clouds based on its abundances of carbon-chain molecules. While, the prestellar core G168-H2 exhibits lower carbon-chain molecular abundances than the general cold dark clouds. With our gas-grain astrochemical model calculations, we attribute the observed chemical differences between G168-H1 and G168-H2 to their different gas densities and different evolutionary stages.
We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O2, and SO2. This large effect is due to the efficiency of the neutral 18O + NO, 18O + SO, and 18O + O2 exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores. The good agreement between model and observations requires that the gas-phase abundance of neutral oxygen atoms is large in the observed regions. The S16O/S18O ratio is predicted to vary substantially over time showing that it can be used as a sensitive chemical proxy for matter evolution in dense molecular clouds.
124 - L.E.Pirogov , I.I.Zinchenko 2009
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-ma ss star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean lifetimes can depend on the inter-clump collisional rates, and vary in the range ~10^4-10^5 yr. These structures are probably connected with density fluctuations due to turbulence in high-mass star-forming regions.
Aims. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods. We followed the formation of dense clouds (on sub-parsec scales) through t he dynamics of the interstellar medium at galac- tic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for ~50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results. We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions. This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا