ترغب بنشر مسار تعليمي؟ اضغط هنا

First Light Results from the Hermes Spectrograph at the AAT

367   0   0.0 ( 0 )
 نشر من قبل Tony Farrell
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V ?= 14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.



قيم البحث

اقرأ أيضاً

We have carried out two extremely deep surveys with SPIRE, one of the two cameras on Herschel, at 250 microns, close to the peak of the far-infrared background. We have used the results to investigate the evolution of the rest-frame 250-micron lumino sity function out to z=2. We find evidence for strong evolution out to a redshift of around 1 but evidence for at most weak evolution beyond this redshift. Our results suggest that a significant part of the stars and metals in the Universe today were formed at z<1.4 in spiral galaxies.
Exoplanets are abundant in our galaxy and yet characterizing them remains a technical challenge. Solar System planets provide an opportunity to test the practical limitations of exoplanet observations with high signal-to-noise data that we cannot acc ess for exoplanets. However, data on Solar System planets differ from exoplanets in that Solar System planets are spatially resolved while exoplanets are unresolved point-sources. We present a novel instrument designed to observe Solar System planets as though they are exoplanets, the Planet as Exoplanet Analog Spectrograph (PEAS). PEAS consists of a dedicated 0.5-m telescope and off-the-shelf optics, located at Lick Observatory. PEAS uses an integrating sphere to disk-integrate light from the Solar System planets, producing spatially mixed light more similar to the spectra we can obtain from exoplanets. This paper describes the general system design and early results of the PEAS instrument.
We present an analysis of the relative throughputs of the 3.9-metre Anglo-Australian Telescopes 2dF/HERMES system, based upon spectra acquired during the first two years of the GALAH survey. Averaged spectral fluxes of stars were compared to their ph otometry to determine the relative throughputs of fibres for a range of fibre position and atmospheric conditions. We find that overall the throughputs of the 771 usable fibres have been stable over the first two years of its operation. About 2.5 per cent of fibres have throughputs much lower than the average. There are also a number of yet unexplained variations between the HERMES bandpasses, and mechanically & optically linked fibre groups known as retractors or slitlets related to regions of the focal plane. These findings do not impact the science that HERMES will produce.
The High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI) is the visible and near-infrared (NIR), adaptive-optics-assisted, integral field spectrograph for ESOs Extremely Large Telescope (ELT). It will hav e both a single-conjugate adaptive optics (SCAO) mode (using a single bright natural guide star) and a laser tomographic adaptive optics (LTAO) mode (using multiple laser guide stars), providing near diffraction-limited hyper-spectral imaging with high performance and good sky coverage, respectively. A unique high-contrast adaptive optics (HCAO) capability has recently been added for exoplanet characterisation. A large detector complement of eight HAWAII-4RG arrays, four choices of spaxel scale, and 11 grating choices with resolving powers ranging from R~3000 to R~17000 make HARMONI a very versatile instrument that can cater to a wide range of observing programmes.
New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of $mathrm{Ne}+mathrm{CH}_{4}$ (0.7 %) at 3.1 bars for a total exposure of $9.7;mathrm{kgcdot days}$. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-$mathrm{GeV/c^2}$ mass region. We exclude cross-sections above $4.4 times mathrm{10^{-37};cm^2}$ at 90 % confidence level (C.L.) for a 0.5 $mathrm{GeV/c^2}$ WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا