ﻻ يوجد ملخص باللغة العربية
Cloud computing has become increasingly popular. Many options of cloud deployments are available. Testing cloud performance would enable us to choose a cloud deployment based on the requirements. In this paper, we present an innovative process, implemented in software, to allow us to assess the quality of the cloud performance data. The process combines performance data from multiple machines, spanning across user experience data, workload performance metrics, and readily available system performance data. Furthermore, we discuss the major challenges of bringing raw data into tidy data formats in order to enable subsequent analysis, and describe how our process has several layers of assessment to validate the quality of the data processing procedure. We present a case study to demonstrate the effectiveness of our proposed process, and conclude our paper with several future research directions worth investigating.
Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analy
Edge video analytics is becoming the solution to many safety and management tasks. Its wide deployment, however, must first address the tension between inference accuracy and resource (compute/network) cost. This has led to the development of video a
This paper has been withdrawn by the author
Using a realistic molecular catalyst system, we conduct scaling studies of ab initio molecular dynamics simulations using the CP2K code on both Intel Xeon CPU and NVIDIA V100 GPU architectures. We explore using process placement and affinity to gain
Most large web-scale applications are now built by composing collections (from a few up to 100s or 1000s) of microservices. Operators need to decide how many resources are allocated to each microservice, and these allocations can have a large impact