ترغب بنشر مسار تعليمي؟ اضغط هنا

The Excess Radio Background and Fast Radio Transients

121   0   0.0 ( 0 )
 نشر من قبل John Kehayias
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE~2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background.



قيم البحث

اقرأ أيضاً

Until very recently we had as many theories to explain Fast Radio Bursts as we have observations of them. An explosion of data is coming, if not here already, and thus it is an opportune time to understand how we can use FRBs for cosmology. The HIRAX experiment, based mostly in South Africa, will be one such experiment, designed not only to observe large numbers of FRBs but also to localise them. In this short article we consider briefly, some ways in which HIRAX can change the landscape of FRB cosmology.
We have conducted two pilot surveys for radio pulsars and fast transients with the Low-Frequency Array (LOFAR) around 140 MHz and here report on the first low-frequency fast-radio burst limit and the discovery of two new pulsars. The first survey, th e LOFAR Pilot Pulsar Survey (LPPS), observed a large fraction of the northern sky, ~1.4 x 10^4 sq. deg, with 1-hr dwell times. Each observation covered ~75 sq. deg using 7 independent fields formed by incoherently summing the high-band antenna fields. The second pilot survey, the LOFAR Tied-Array Survey (LOTAS), spanned ~600 sq. deg, with roughly a 5-fold increase in sensitivity compared with LPPS. Using a coherent sum of the 6 LOFAR Superterp stations, we formed 19 tied-array beams, together covering 4 sq. deg per pointing. From LPPS we derive a limit on the occurrence, at 142 MHz, of dispersed radio bursts of < 150 /day/sky, for bursts brighter than S > 107 Jy for the narrowest searched burst duration of 0.66 ms. In LPPS, we re-detected 65 previously known pulsars. LOTAS discovered two pulsars, the first with LOFAR or any digital aperture array. LOTAS also re-detected 27 previously known pulsars. These pilot studies show that LOFAR can efficiently carry out all-sky surveys for pulsars and fast transients, and they set the stage for further surveying efforts using LOFAR and the planned low-frequency component of the Square Kilometer Array.
79 - Shikhar Mittal 2021
Using the global 21-cm signal measurement by the EDGES collaboration, we derive constraints on the fraction of the dark matter that is in the form of primordial black holes (PBHs) with masses in the range $10^{15}$-$10^{17},$g. Improving upon previou s analyses, we consider the effect of the X-ray heating of the intergalactic medium on these constraints, and also use the full shape of the 21-cm absorption feature in our inference. In order to account for the anomalously deep absorption amplitude, we also consider an excess radio background motivated by LWA1 and ARCADE2 observations. Because the heating rate induced by PBH evaporation evolves slowly, the data favour a scenario in which PBH-induced heating is accompanied by X-ray heating. Also, for the same reason, using the full measurement across the EDGES observation band yields much stronger constraints on PBHs than just the redshift of absorption. We find that 21-cm observations exclude $f_{mathrm{PBH}} gtrsim 10^{-9.7}$ at 95% CL for $M_{mathrm{PBH}}=10^{15},$g. This limit weakens approximately as $M_{mathrm{PBH}}^4$ towards higher masses, thus providing the strongest constraints on ultralight evaporating PBHs as dark matter over the entire mass range $10^{15}$-$10^{17},$g. Under the assumption of a simple spherical gravitational collapse based on the Press-Schechter formalism, we also derive bounds on the curvature power spectrum at extremely small scales ($ksim 10^{15},$Mpc$^{-1}$). This highlights the usefulness of global 21-cm measurements, including non-detections, across wide frequency bands for probing exotic physical processes.
We explore the possibility that the Fast Radio Bursts (FRBs) are powered by magnetic reconnection in magnetars, triggered by Axion Quark Nugget (AQN) dark matter. In this model, the magnetic reconnection is ignited by the shock wave which develops wh en the nuggets Mach number $M gg 1$. These shock waves generate very strong and very short impulses expressed in terms of pressure $Delta p/psim M^2$ and temperature $Delta T/Tsim M^2$ in the vicinity of (would be) magnetic reconnection area. We find that the proposed mechanism produces a coherent emission which is consistent with current data, in particular the FRB energy requirements, the observed energy distribution, the frequency range and the burst duration. Our model allows us to propose additional tests which future data will be able to challenge.
199 - Fabrice Mottez 2014
The six known highly dispersed fast radio bursts are attributed to extragalactic radio sources, of unknown origin but extremely energetic. We propose here a new explanation - not requiring an extreme release of energy - involving a body (planet, aste roid, white dwarf) orbiting an extragalactic pulsar. We investigate a theory of radio waves associated to such pulsar-orbiting bodies. We focus our analysis on the waves emitted from the magnetic wake of the body in the pulsar wind. After deriving their properties, we compare them with the observations of various transient radio signals in order to see if they could originate from pulsar-orbiting bodies. The analysis is based on the theory of Alfven wings: for a body immersed in a pulsar wind, a system of two stationary Alfven waves is attached to the body, provided that the wind is highly magnetized. When destabilized through plasma instabilities, Alfven wings can be the locus of strong radio sources convected with the pulsar wind. Assuming a cyclotron maser instability operating in the Alfven wings, we make predictions about the shape, frequencies and brightness of the resulting radio emissions. Because of the beaming by relativistic aberration, the signal is seen only when the companion is perfectly aligned between its parent pulsar and the observer, as for occultations. For pulsar winds with a high Lorentz factor, the whole duration of the radio event does not exceed a few seconds, and it is composed of one to four peaks lasting a few milliseconds each, detectable up to distances of several Mpc. The Lorimer burst, the three isolated pulses of PSR J1928+15, and the recently detected fast radio bursts are all compatible with our model. According to it, these transient signals should repeat periodically with the companions orbital period. The search of pulsar-orbiting bodies could be an exploration theme for new- or next-generation radio telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا