ﻻ يوجد ملخص باللغة العربية
We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.
In this paper we study the local linearization of the Hellinger--Kantorovich distance via its Riemannian structure. We give explicit expressions for the logarithmic and exponential map and identify a suitable notion of a Riemannian inner product. Sam
We discuss a new notion of distance on the space of finite and nonnegative measures which can be seen as a generalization of the well-known Kantorovich-Wasserstein distance. The new distance is based on a dynamical formulation given by an Onsager ope
We study the barycenter of the Hellinger--Kantorovich metric over non-negative measures on compact, convex subsets of $mathbb{R}^d$. The article establishes existence, uniqueness (under suitable assumptions) and equivalence between a coupled-two-marg
In 2017, Boaz Klartag obtained a new result in differential geometry on the existence of affine hemisphere of elliptic type. In his approach, a surface is associated with every a convex function $Phi$ : R^n $rightarrow$ (0, +$infty$) and the conditio
We present and study novel optimal control problems motivated by the search for photovoltaic materials with high power-conversion efficiency. The material must perform the first step: convert light (photons) into electronic excitations. We formulate