ﻻ يوجد ملخص باللغة العربية
With the physical Higgs mass the Standard Model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2) X U(1) gauge + Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only approximately 5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result $T_c = 159.5 pm 1.5$ GeV. Outside of the narrow cross-over region the perturbative results agree well with non-perturbative ones.
Estimates of the CP violating observable $varepsilon/varepsilon$ have gained some attention in the past few years. Depending on the long-distance treatment used, they exhibit up to $2.9sigma$ deviation from the experimentally measured value. Such a d
We present for the first time a model-independent anatomy of the ratio $varepsilon/varepsilon$ in the context of the $Delta S = 1$ effective theory with operators invariant under QCD and QED and in the context of the Standard Model Effective Field Th
We show that the leading coupling between a shift symmetric inflaton and the Standard Model fermions leads to an induced electroweak symmetry breaking due to particle production during inflation, and as a result, a unique oscillating feature in non-G
We demonstrate that light spectator fields can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spec
We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $alpha$ and is broken down into pure QED, electroweak, and hadro