ﻻ يوجد ملخص باللغة العربية
Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu$_4$Sn$_6$ is a strongly correlated material with non-trivial topology.
A new type of topological state in strongly corrected condensed matter systems, heavy Weyl fermion state, has been found in a heavy fermion material CeRu$_4$Sn$_6$, which has no inversion symmetry. Both two different types of Weyl points, type I and
Kondo insulators and in particular their non-cubic representatives have remained poorly understood. Here we report on the development of an anisotropic energy pseudogap in the tetragonal compound CeRu$_4$Sn$_6$ employing optical reflectivity measurem
Bulk sensitive hard x-ray photoelectron spectroscopy data of the Ce 3$p$ core level of CeRu$_4$Sn$_6$ are presented. Using a combination of full multiplet and configuration iteration model we were able to obtain an accurate lineshape analysis of the
Using density functional theory based calculations, we show that the correlated mixed-valent compound SmO is a 3D strongly topological semi-metal as a result of a 4$f$-5$d$ band inversion at the X point. The [001] surface Bloch spectral density revea
We have investigated the local low-energy excitations in CeRu$_4$Sn$_6$, a material discussed recently in the framework of strongly correlated Weyl semimetals, by means of Ce $M_5$ resonant inelastic x-ray scattering (RIXS). The availability of both