ﻻ يوجد ملخص باللغة العربية
The massive red supergiant (RSG) W26 in Westerlund 1 is one of a growing number of RSGs shown to have winds that are ionized from the outside in. The fate of this dense wind material is important for models of second generation star formation in massive star clusters. Mackey et al. (2014) showed that external photoionization can stall the wind of RSGs and accumulate mass in a dense static shell. We use 1D R-HD simulations of an externally photoionized wind to predict the Halpha and [NII] emission arising from photoionized winds both with and without a dense shell. We analyse spectra of the Halpha and [NII] emission in the environment around W26 and compare them with predicted synthetic emission. Simulations of slow winds that are decelerated into a dense shell show strongly limb-brightened line emission, with line radial velocities that are independent of the wind speed. Faster winds (>22 km/s) do not form a dense shell, have less limb-brightening, and the line radial velocity is a good tracer of the wind speed. The brightness of the [NII] and Halpha lines as a function of distance from W26 agrees reasonably well with observations when only the line flux is considered. The radial velocity disagrees, however: the brightest observed emission is blueshifted by ~25 km/s relative to the radial velocity of the star, whereas a spherically symmetric wind has the brightest emission at zero radial velocity. Our results show that the bright nebula surrounding W26 must be asymmetric; we suggest it is confined by external ram pressure from the wind of the nearby supergiant W9. We obtain a lower limit on the nitrogen abundance within the nebula of 2.35 times solar. The line ratio strongly favours photoionization over shock ionization, and so even if the observed nebula is pressure confined there should still be an ionization front and a photoionization-confined shell closer to the star.
Cassiopeia A (Cas A) is one of the best studied young Galactic supernova remnants. While providing a rare opportunity to study in detail the remnant of a Type IIb supernova, questions remain regarding the nature of its progenitor, its mass-loss histo
Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength
Galactic, young massive star clusters are approximately coeval aggregates of stars, close enough to resolve the individual stars, massive enough to have produced large numbers of massive stars, and young enough for these stars to be in a pre-supernov
A few star clusters in the Magellanic Clouds exhibit composite structures in the red-clump region of their colour-magnitude diagrams. The most striking case is NGC419 in the SMC, where the red clump is composed of a main blob as well as a distinct se
The centre of the Milky Way is the site of several high-energy processes that have strongly impacted the inner regions of our Galaxy. Activity from the super-massive black hole, Sgr A*, and/or stellar feedback from the inner molecular ring expel matt