ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Emission and Orbital Motion from the Close-Encounter Star-Brown Dwarf Binary WISE J072003.20-084651.2

127   0   0.0 ( 0 )
 نشر من قبل Adam J. Burgasser
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adam J. Burgasser




اسأل ChatGPT حول البحث

We report the detection of radio emission and orbital motion from the nearby star-brown dwarf binary WISE J072003.20-084651.2AB. Radio observations across the 4.5-6.5 GHz band with the Very Large Array identify at the position of the system quiescent emission with a flux density of 15$pm$3 $mu$Jy, and a highly-polarized radio source that underwent a 2-3 min burst with peak flux density 300$pm$90 $mu$Jy. The latter emission is likely a low-level magnetic flare similar to optical flares previously observed for this source. No outbursts were detected in separate narrow-band H$alpha$ monitoring observations. We report new high-resolution imaging and spectroscopic observations that confirm the presence of a co-moving T5.5 secondary and provide the first indications of three-dimensional orbital motion. We used these data to revise our estimates for the orbital period (4.1$^{+2.7}_{-1.3}$ yr) and tightly constrain the orbital inclination to be nearly edge-on (93.6deg$^{+1.6deg}_{-1.4deg}$), although robust measures of the component and system masses will require further monitoring. The inferred orbital motion does not change the high likelihood that this radio-emitting very low-mass binary made a close pass to the Sun in the past 100 kyr.



قيم البحث

اقرأ أيضاً

The severe crowding towards the Galactic plane suggests that the census of nearby stars in that direction may be incomplete. Recently, Scholz reported a new M9 object at an estimated distance d~7 pc (WISE J072003.20-084651.2; hereafter WISE0720) at G alactic latitude b=2.3 degr. Our goals are to determine the physical characteristics of WISE0720, its kinematic properties, and to address the question if it is a binary object, as suggested in the discovery paper. Optical and infrared spectroscopy from the Southern African Large Telescope and Magellan, respectively, and spectral energy distribution fitting were used to determine the spectral type of WISE0720. The measured radial velocity, proper motion and parallax yielded its Galactic velocities. We also investigated if WISE0720 may show X-ray activity based on archival data. Our spectra are consistent with spectral type L0+/-1. We find no evidence for binarity, apart for a minor 2-sigma level difference in the radial velocities taken at two different epochs. The spatial velocity of WISE0720 does not connect it to any known moving group, instead it places the object with high probability in the old thin disk or in the thick disk. The spectral energy distribution fit hints at excess in the 12 and 22 micron WISE bands which may be due to a redder companion, but the same excess is visible in other late type objects, and it more likely implies a shortcoming of the models (e.g., issues with the effective wavelengths of the filters for these extremely cool objects, etc.) rather than a disk or redder companion. The optical spectrum shows some Halpha emission, indicative of stellar activity. Archival X-ray observations yield no detection.
130 - Adam J. Burgasser 2014
[Abridged] We report observations of the recently discovered, nearby late-M dwarf WISE J072003.20-084651.2. Astrometric measurements obtained with TRAPPIST improve the distance measurement to 6.0$pm$1.0 pc and confirm the low tangential velocity (3.5 $pm$0.6 km/s) reported by Scholz. Low-resolution optical spectroscopy indicates a spectral type of M9.5 and prominent H$alpha$ emission (<LH$alpha$/Lbol> = -4.68$pm$0.06), but no evidence of subsolar metallicity or Li I absorption. Near-infrared spectroscopy reveals subtle peculiarities indicating the presence of a T5 binary companion, and high-resolution laser guide star adaptive optics imaging reveals a faint ($Delta$H = 4.1) candidate source 014 (0.8 AU) from the primary. We measure a stable radial velocity of +83.8$pm$0.3 km/s, indicative of old disk kinematics and consistent with the angular separation of the possible companion. We measure a projected rotational velocity of v sin i = 8.0$pm$0.5 km/s, and find evidence of low-level variability (~1.5%) in a 13-day TRAPPIST lightcurve, but cannot robustly constrain the rotational period. We also observe episodic changes in brightness (1-2%) and occasional flare bursts (4-8%) with a 0.8% duty cycle, and order-of-magnitude variations in H$alpha$ line strength. Combined, these observations reveal WISE J0720-0846 to be an old, very low-mass binary whose components straddle the hydrogen burning minimum mass, and whose primary is a relatively rapid rotator and magnetically active. It is one of only two known binaries among late M dwarfs within 10 pc of the Sun, both harboring a mid T-type brown dwarf companion. While this specific configuration is rare (1.4% probability), roughly 25% of binary companions to late-type M dwarfs in the local population are likely low-temperature T or Y brown dwarfs.
We present individual dynamical masses for the nearby M9.5+T5.5 binary WISE J072003.20$-$084651.2AB, a.k.a. Scholzs star. Combining high-precision CFHT/WIRCam photocenter astrometry and Keck adaptive optics resolved imaging, we measure the first high -quality parallactic distance ($6.80_{-0.06}^{+0.05}$ pc) and orbit ($8.06_{-0.25}^{+0.24}$ yr period) for this system composed of a low-mass star and brown dwarf. We find a moderately eccentric orbit ($e = 0.240_{-0.010}^{+0.009}$), incompatible with previous work based on less data, and dynamical masses of $99pm6$ $M_{rm Jup}$ and $66pm4$ $M_{rm Jup}$ for the two components. The primary mass is marginally inconsistent (2.1$sigma$) with the empirical mass$-$magnitude$-$metallicity relation and models of main-sequence stars. The relatively high mass of the cold ($T_{rm eff} = 1250pm40$ K) brown dwarf companion indicates an age older than a few Gyr, in accord with age estimates for the primary star, and is consistent with our recent estimate of $approx$70 $M_{rm Jup}$ for the stellar/substellar boundary among the field population. Our improved parallax and proper motion, as well as an orbit-corrected system velocity, improve the accuracy of the systems close encounter with the solar system by an order of magnitude. WISE J0720$-$0846AB passed within $68.7pm2.0$ kAU of the Sun $80.5pm0.7$ kyr ago, passing through the outer Oort cloud where comets can have stable orbits.
183 - Eric E. Mamajek 2013
I report some observations and calculations related to the new nearby brown dwarf at d = 2 pc discovered by Luhman (2013, ApJ Letters, in press; arXiv:1303.2401). I report archival astrometry and photometry of the new object from IRAS (epoch 1983.5; IRAS Z10473-5303), AKARI (epoch 2007.0; AKARI J1049166-531907), and the Guide Star Catalog (epoch 1995.304; GSC2.2 S11132026703, GSC2.3 S4BM006703). A SuperCOSMOS scan of a plate taken with the ESO Schmidt Telescope (epoch 1984.169) shows the source as elongated (PA = 138 deg). Membership of the binary to any of the known nearby young groups within 100 pc appears unlikely based on the available astrometry and photometry. Based on the proper motion and parallax, a Monte Carlo simulation of thin disk/thick disk/halo stars is suggestive that the binary is, unsurprisingly, most likely a thin disk star (~96%), with a ~4% chance that it is a thick disk (and negligible chance that it is a halo star). I suggest that this important new nearby binary be called by either its provisional Washington Double Star catalog identifier (Luhman 16), or perhaps Luhman-WISE 1, either of which is easier to remember than the WISE identifier.
Route & Wolszczan (2016) recently detected five radio bursts from the T6 dwarf WISEP J112254.73+255021.5 and used the timing of these events to propose that this object rotates with an ultra-short period of ~17.3 minutes. We conducted follow-up obser vations with the Very Large Array and Gemini-North but found no evidence for this periodicity. We do, however, observe variable, highly circularly polarized radio emission possibly with a period of 116 minutes, although our observation lasted only 162 minutes and so more data are needed to confirm it. Our proposed periodicity is typical of other radio-active ultracool dwarfs. The handedness of the circular polarization alternates with time and there is no evidence for any unpolarized emission component, the first time such a phenomenology has been observed in radio studies of very low-mass stars and brown dwarfs. We suggest that the objects magnetic dipole axis may be highly misaligned relative to its rotation axis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا