ﻻ يوجد ملخص باللغة العربية
ALMA will open a new chapter in the study of the Sun by providing a leap in spatial resolution and sensitivity compared to currently available mm wave- length observations. In preparation of ALMA, we have carried out a large number of observational tests and state-of-the-art radiation MHD simulations. Here we review the best available observations of the Sun at millimeter wavelengths.Using state of the art radiation MHD simulations of the solar atmosphere we demonstrate the huge potential of ALMA observations for uncovering the nature of the solar chromosphere. We show that ALMA will not only provide a reliable probe of the thermal structure and dynamics of the chromosphere, it will also open up a powerful new diagnostic of magnetic field at chromospheric heights, a fundamentally important, but so far poorly known parameter.
We measured the center-to-limb variation of the brightness temperature, $T_b$, from ALMA full-disk images at two frequencies and inverted the solution of the transfer equation to obtain the electron temperature, $T_e$ as a function of optical depth,
This document was created by the Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) in preparation of the first regular observations of the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA), which are anti
ALMA observations of the Sun at mm-$lambda$ offer a unique opportunity to investigate the temperature structure of the solar chromosphere. In this article we expand our previous work on modeling the chromospheric temperature of the quiet Sun, by incl
Using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the quiet Sun at 1.26 and 3 mm, we study spatially resolved oscillations and transient brightenings, i.e. small, weak events of energy release. Both phenomena may have a bearin
We present an initial study of one of the first ALMA Band 3 observations of the Sun with the aim to characterise the diagnostic potential of brightness temperatures measured with ALMA on the Sun. The observation covers 48min at a cadence of 2s target