ﻻ يوجد ملخص باللغة العربية
We develop differential measurement protocols that circumvent the laser noise limit in the stability of optical clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows for probe times longer than the laser coherence time, avoids the Dick effect, and supports Heisenberg-limited measurement precision. We present protocols for such frequency comparisons and develop numerical simulations of the protocols with realistic noise sources. These methods provide a route to reduce frequency ratio measurement durations by more than an order of magnitude.
Atomic lattice clocks have spurred numerous ideas for tests of fundamental physics, detection of general relativistic effects, and studies of interacting many-body systems. On the other hand, molecular structure and dynamics offer rich energy scales
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv
We consider hyperfine-mediated effects for clock transitions in $^{176}$Lu$^+$. Mixing of fine structure levels due to the hyperfine interaction bring about modifications to Lande $g$-factors and the quadrupole moment for a given state. Explicit expr
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes.
We demonstrate precision measurement and control of inhomogeneous broadening in a multi-ion clock consisting of three $^{176}$Lu$^+$ ions. Microwave spectroscopy between hyperfine states in the $^3D_1$ level is used to characterise differential syste