ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric and spectroscopic study of the intermediate-age open cluster NGC 2355

117   0   0.0 ( 0 )
 نشر من قبل Paolo Donati
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$, and $I_c$ filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]$=-0.06$ dex, age between 0.8 and 1 Gyr, reddening $E(B-V)$ in the range 0.14 and 0.19 mag, and distance modulus $(m-M)_0$ of about 11 mag. We also investigated the abundances of O, Na, Al, $alpha$, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.



قيم البحث

اقرأ أيضاً

This work presents the first long-term photometric variability survey of the intermediate-age open cluster NGC 559. Time-series V band photometric observations on 40 nights taken over more than three years with three different telescopes are analyzed to search for variable stars in the cluster. We investigate the data for the periodicity analysis and reveal 70 variable stars including 67 periodic variables in the target field, all of them are newly discovered. The membership analysis of the periodic variables reveal that 30 of them belong to the cluster and remaining 37 are identified as field variables. Out of the 67 periodic variables, 48 are short-period (P<1 day) variables and 19 are long-period (P>1 day) variables. The variable stars have periodicity between 3 hours to 41 days and their brightness ranges from V = 10.9 to 19.3 mag. The periodic variables belonging to the cluster are then classified into different variability types on the basis of observational properties such as shape of the light curves, periods, amplitudes, as well as their positions in the Hertzsprung-Russell (H-R) diagram. As a result, we identify one Algol type eclipsing binary, one possible blue straggler star, 3 slowly pulsating B type stars, 5 rotational variables, 11 non-pulsating variables, 2 FKCOM variables and remaining 7 are characterized as miscellaneous variables. We also identify three Eclipsing Binary stars (EBs) belonging to the field star population. The PHOEBE package is used to analyse the light curve of all four EBs in order to determine the parameters of the binary systems such as masses, temperatures and radii.
We present a comprehensive photometric analysis of a young open cluster NGC 1960 (M36) along with the long-term variability study of this cluster. Based on the kinematic data of Gaia DR2, the membership probabilities of 3871 stars are ascertained in the cluster field among which 262 stars are found to be cluster members. Considering the kinematic and trigonometric measurements of the cluster members, we estimate a mean cluster parallax of 0.86+/-0.05 mas and mean proper motions of mu_RA = -0.143+/-0.008 mas/yr, mu_Dec = -3.395+/-0.008 mas/yr. We obtain basic parameters of the cluster such as E(B-V) = 0.24+/-0.02 mag, log(Age/yr)=7.44+/-0.02, and distance = 1.17+/-0.06 kpc. The mass function slope in the cluster for the stars in the mass range of 0.72-7.32 M_solar is found to be gamma = -1.26+/-0.19. We find that mass segregation is still taking place in the cluster which is yet to be dynamically relaxed. This work also presents first high-precision variability survey in the central 13x13 among which 72 are periodic variables. Among them, 59 are short-period (P<1 day)and 13 are long-period (P>1 day). The variable stars have V magnitudes ranging between 9.1 to 19.4 mag and periods between 41 minutes to 10.74 days. On the basis of their locations in the H-R diagram, periods and characteristic light curves, the 20 periodic variables belong to the cluster. We classified them as 2 delta-Scuti, 3 gamma-Dor, 2 slowly pulsating B stars, 5 rotational variables, 2 non-pulsating B stars and 6 as miscellaneous variables.
High-dispersion spectra centered on the Li 6708 A line have been obtained for 70 potential members of the open cluster NGC 3680, with an emphasis on stars in the turnoff region. A measurable Li abundance has been derived for 53 stars, 39 of which hav e radial velocities and proper motions consistent with cluster membership. After being transferred to common temperature and abundance scales, previous Li estimates have been combined to generate a sample of 49 members, 40 of which bracket the cluster Li-dip. Spectroscopic elemental analysis of 8 giants and 5 turnoff stars produces [Fe/H] = -0.17 +/- 0.07 (sd) and -0.07 +/- 0.02 (sd), respectively. We also report measurements of Ca, Si and Ni which are consistent with scaled-solar ratios within the errors. Adopting [Fe/H] = -0.08 (Sect. 3.6), Y^2 isochrone comparisons lead to an age of 1.75 +/- 0.10 Gyr and an apparent modulus of (m-M) = 10.30 +/- 0.15 for the cluster, placing the center of the Li-dip at 1.35 +/- 0.03 solar masses. Among the giants, 5 of 9 cluster members are now known to have measurable Li with A(Li) near 1.0. A combined sample of dwarfs in the Hyades and Praesepe is used to delineate the Li-dip profile at 0.7 Gyr and [Fe/H] = +0.15, establishing its center at 1.42 +/- 0.02 solar masses and noting the possible existence of secondary dip on its red boundary. When evolved to the typical age of the clusters NGC 752, IC 4651 and NGC 3680, the Hyades/Praesepe Li-dip profile reproduces the observed morphology of the combined Li-dip within the CMDs of the intermediate-age clusters while implying a metallicity dependence for the central mass of the Li-dip given by Mass = (1.38 +/-0.04) + (0.4 +/- 0.2)[Fe/H]. The implications of the similarity of the Li-dichotomy among giants in NGC 752 and IC 4651 and the disagreement with the pattern among NGC 3680 giants are discussed.
The NASA space telescope Kepler has provided unprecedented time-series observations which have revolutionised the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of the present paper. However, apart from high-precision time-series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R~25,000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial-velocity of NGC 6811 is found to be +6.68$pm$0.08 km s$^{-1}$ and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.
133 - Giovanni Carraro 2011
NGC 5822 is a richly populated, moderately nearby, intermediate-age open cluster covering an area larger than the full moon on the sky. A CCD survey of the cluster on the UBVI and uvbyCaHbeta systems shows that the cluster is superposed upon a heavil y reddened field of background stars with E(B-V) > 0.35 mag, while the cluster has small and uniform reddening at E(b-y) = 0.075 +/- 0.008 mag or E(B-V) = 0.103 +/- 0.011 mag, based upon 48 and 61 probable A and F dwarf single-star members, respectively. The errors quoted include both internal photometric precision and external photometric uncertainties. The metallicity derived from 61 probable single F-star members is [Fe/H] = -0.058 +/- 0.027 (sem) from m_1 and 0.010 +/- 0.020 (sem) from hk, for a weighted average of [Fe/H] = -0.019 +/- 0.023, where the errors refer to the internal errors from the photometry alone. With reddening and metallicity fixed, the cluster age and apparent distance modulus are obtained through a comparison to appropriate isochrones in both VI and BV, producing 0.9 +/- 0.1 Gyr and 9.85 +/- 0.15, respectively. The giant branch remains dominated by two distinct clumps of stars, though the brighter clump seems a better match to the core-He-burning phase while the fainter clump straddles the first-ascent red giant branch. Four potential new clump members have been identified, equally split between the two groups. Reanalysis of the UBV two-color data extending well down the main sequence shows it to be optimally matched by reddening near E(B-V) = 0.10 rather than the older value of 0.15, leading to [Fe/H] between -0.16 and 0.00 from the ultraviolet excess of the unevolved dwarfs. The impact of the lower reddening and younger age of the cluster on previous analyses of the cluster is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا