ﻻ يوجد ملخص باللغة العربية
Parameterization extends higher-order processes with the capability of abstraction (akin to that in lambda-calculus), and is known to be able to enhance the expressiveness. This paper focuses on the parameterization of names, i.e. a construct that maps a name to a process, in the higher-order setting. We provide two results concerning its computation capacity. First, name parameterization brings up a complete model, in the sense that it can express an elementary interactive model with built-in recursive functions. Second, we compare name parameterization with the well-known pi-calculus, and provide two encodings between them.
Higher-order processes with parameterization are capable of abstraction and application (migrated from the lambda-calculus), and thus are computationally more expressive. For the minimal higher-order concurrency, it is well-known that the strong bisi
Parameterization extends higher-order processes with the capability of abstraction and application (like those in lambda-calculus). This extension is strict, i.e., higher-order processes equipped with parameterization is computationally more powerful
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types communicating processes with mobile channels, a la pi-calculus. Its construction builds on a recent propositions as types correspondence between session typ
This paper studies context bisimulation for higher-order processes, in the presence of parameterization (viz. abstraction). We show that the extension of higher-order processes with process parameterization retains the characterization of context bis
We show that the techniques for resource control that have been developed in the so-called light logics can be fruitfully applied also to process algebras. In particular, we present a restriction of Higher-Order pi-calculus inspired by Soft Linear Lo