ﻻ يوجد ملخص باللغة العربية
We derive independence tests by means of dependence measures thresholding in a semiparametric context. Precisely, estimates of phi-mutual informations, associated to phi-divergences between a joint distribution and the product distribution of its margins, are derived through the dual representation of phi-divergences. The asymptotic properties of the proposed estimates are established, including consistency, asymptotic distributions and large deviations principle. The obtained tests of independence are compared via their relative asymptotic Bahadur efficiency and numerical simulations. It follows that the proposed semiparametric Kullback-Leibler Mutual information test is the optimal one. On the other hand, the proposed approach provides a new method for estimating the Kullback-Leibler mutual information in a semiparametric setting, as well as a model selection procedure in large class of dependency models including semiparametric copulas.
In this paper we study the problem of semiparametric estimation for a class of McKean-Vlasov stochastic differential equations. Our aim is to estimate the drift coefficient of a MV-SDE based on observations of the corresponding particle system. We pr
Mutual information is a well-known tool to measure the mutual dependence between variables. In this paper, a Bayesian nonparametric estimation of mutual information is established by means of the Dirichlet process and the $k$-nearest neighbor distanc
We consider the problem of conditional independence testing of $X$ and $Y$ given $Z$ where $X,Y$ and $Z$ are three real random variables and $Z$ is continuous. We focus on two main cases - when $X$ and $Y$ are both discrete, and when $X$ and $Y$ are
Let ${bf R}$ be the Pearson correlation matrix of $m$ normal random variables. The Raos score test for the independence hypothesis $H_0 : {bf R} = {bf I}_m$, where ${bf I}_m$ is the identity matrix of dimension $m$, was first considered by Schott (20
We introduce a new test procedure of independence in the framework of parametric copulas with unknown marginals. The method is based essentially on the dual representation of $chi^2$-divergence on signed finite measures. The asymptotic properties of