ترغب بنشر مسار تعليمي؟ اضغط هنا

Developmental Partial Differential Equations

71   0   0.0 ( 0 )
 نشر من قبل Nastassia Pouradier Duteil
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce the concept of Developmental Partial Differential Equation (DPDE), which consists of a Partial Differential Equation (PDE) on a time-varying manifold with complete coupling between the PDE and the manifolds evolution. In other words, the manifolds evolution depends on the solution to the PDE, and vice versa the differential operator of the PDE depends on the manifolds geometry. DPDE is used to study a diffusion equation with source on a growing surface whose growth depends on the intensity of the diffused quantity. The surface may, for instance, represent the membrane of an egg chamber and the diffused quantity a protein activating a signaling pathway leading to growth. Our main objective is to show controllability of the surface shape using a fixed source with variable intensity for the diffusion. More specifically, we look for a control driving a symmetric manifold shape to any other symmetric shape in a given time interval. For the diffusion we take directly the Laplace-Beltrami operator of the surface, while the surface growth is assumed to be equal to the value of the diffused quantity. We introduce a theoretical framework, provide approximate controllability and show numerical results. Future applications include a specific model for the oogenesis of Drosophila melanogaster.



قيم البحث

اقرأ أيضاً

We study the problem of optimal inside control of an SPDE (a stochastic evolution equation) driven by a Brownian motion and a Poisson random measure. Our optimal control problem is new in two ways: (i) The controller has access to inside information, i.e. access to information about a future state of the system, (ii) The integro-differential operator of the SPDE might depend on the control. In the first part of the paper, we formulate a sufficient and a necessary maximum principle for this type of control problem, in two cases: (1) When the control is allowed to depend both on time t and on the space variable x. (2) When the control is not allowed to depend on x. In the second part of the paper, we apply the results above to the problem of optimal control of an SDE system when the inside controller has only noisy observations of the state of the system. Using results from nonlinear filtering, we transform this noisy observation SDE inside control problem into a full observation SPDE insider control problem. The results are illustrated by explicit examples.
With human social behaviors influence, some boyciana-fish reaction-diffusion system coupled with elliptic human distribution equation is considered. Firstly, under homogeneous Neumann boundary conditions and ratio-dependent functional response the sy stem can be described as a nonlinear partial differential algebraic equations (PDAEs) and the corresponding linearized system is discussed with singular system theorem. In what follows we discuss the elliptic subsystem and show that the three kinds of nonnegative are corresponded to three different human interference conditions: human free, overdevelopment and regular human activity. Next we examine the system persistence properties: absorbtion region and the stability of positive steady states of three systems. And the diffusion-driven unstable property is also discussed. Moreover, we propose some energy estimation discussion to reveal the dynamic property among the boyciana-fish-human interaction systems.Finally, using the realistic data collected in the past fourteen years, by PDAEs model parameter optimization, we carry out some predicted results about wetland boyciana population. The applicability of the proposed approaches are confirmed analytically and are evaluated in numerical simulations.
In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We d iscuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.
248 - Shanjian Tang , Zhou Yang 2011
A Dynkin game is considered for stochastic differential equations with random coefficients. We first apply Qiu and Tangs maximum principle for backward stochastic partial differential equations to generalize Krylov estimate for the distribution of a Markov process to that of a non-Markov process, and establish a generalized It^o-Kunita-Wentzells formula allowing the test function to be a random field of It^os type which takes values in a suitable Sobolev space. We then prove the verification theorem that the Nash equilibrium point and the value of the Dynkin game are characterized by the strong solution of the associated Hamilton-Jacobi-Bellman-Isaacs equation, which is currently a backward stochastic partial differential variational inequality (BSPDVI, for short) with two obstacles. We obtain the existence and uniqueness result and a comparison theorem for strong solution of the BSPDVI. Moreover, we study the monotonicity on the strong solution of the BSPDVI by the comparison theorem for BSPDVI and define the free boundaries. Finally, we identify the counterparts for an optimal stopping time problem as a special Dynkin game.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor responding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا