ترغب بنشر مسار تعليمي؟ اضغط هنا

The First U.S. Naval Observatory Robotic Astrometric Telescope Catalog (URAT1)

133   0   0.0 ( 0 )
 نشر من قبل Norbert Zacharias
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

URAT1 is an observational, astrometric catalog covering most of the Dec >= -15 deg area and a magnitude range of about R = 3 to 18.5. Accurate positions (typically 10 to 30 mas standard error) are given for over 228 million objects at a mean epoch around 2013.5. For the over 188 million objects matched with the 2MASS point source catalog proper motions (typically 5 to 7 mas/yr std. errors) are provided. These data are supplemented by 2MASS and APASS photometry. Observations, reductions and catalog construction are described together with results from external data verifications. The catalog data are served by CDS, Starsbourg (I/329). There is no DVD release.



قيم البحث

اقرأ أيضاً

The results of 3,989 intensified CCD observations of double stars, made with the 26-inch refractor of the U.S. Naval Observatory, are presented. Each observation of a system represents a combination of over two thousand short-exposure images. These o bservations are averaged into 1,911 mean relative positions and range in separation from 0.289 to 128.638, with a median separation of 8.669. Four orbits are improved. This is the 23rd in this series of papers and covers the period 4 January 2017 through 13 September 2017.
The third US Naval Observatory (USNO) CCD Astrograph Catalog, UCAC3 was released at the IAU General Assembly on 2009 August 10. It is the first all-sky release in this series and contains just over 100 million objects, about 95 million of them with p roper motions, covering about R = 8 to 16 magnitudes. Current epoch positions are obtained from the observations with the 20 cm aperture USNO Astrographs red lens, equipped with a 4k by 4k CCD. Proper motions are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars in the Southern Hemisphere the Yale/San Juan first epoch plates from the SPM program (YSJ1) form the basis for proper motions. These data are supplemented by all-sky Schmidt plate survey astrometry and photometry obtained from the SuperCOSMOS project, as well as 2MASS near-IR photometry. Major differences of UCAC3 data as compared to UCAC2 include a completely new raw data reduction with improved control over systematic errors in positions, significantly improved photometry, slightly deeper limiting magnitude, coverage of the north pole region, greater completeness by inclusion of double stars and weak detections. This of course leads to a catalog which is not as clean as UCAC2 and problem areas are outlined for the user in this paper. The positional accuracy of stars in UCAC3 is about 15 to 100 mas per coordinate, depending on magnitude, while the errors in proper motions range from 1 to 10 mas/yr depending on magnitude and observing history, with a significant improvement over UCAC2 achieved due to the re-reduced SPM data and inclusion of more astrograph plate data unavailable at the time of UCAC2.
The fourth United States Naval Observatory (USNO) CCD Astrograph Catalog, UCAC4 was released in August 2012 (double-sided DVD and CDS data center Vizier catalog I/322). It is the final release in this series and contains over 113 million objects; ove r 105 million of them with proper motions. UCAC4 is an updated version of UCAC3 with about the same number of stars also covering all-sky. Bugs were fixed, Schmidt plate survey data were avoided, and precise 5-band photometry were added. Astrograph observations have been supplemented for bright stars by FK6, Hipparcos and Tycho-2 data to compile a UCAC4 star catalog complete to about magnitude R = 16. Epoch 1998 to 2004 positions are obtained from observations with the 20 cm aperture USNO Astrographs red lens, equipped with a 4k by 4k CCD. Mean positions and proper motions are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars the first epoch plates from the Southern Proper Motion (SPM) and the Northern Proper Motion (NPM) programs form the basis for proper motions. These data are supplemented by 2MASS near-IR photometry for about 110 million stars and 5-band (B,V,g,r,i) APASS data for over 51 million stars. Thus the published UCAC4, as were UCAC3 and UCAC2, is a compiled catalog with the UCAC observational program being a major component. The positional accuracy of stars in UCAC4 at mean epoch is about 15 to 100 mas per coordinate, depending on magnitude, while the formal errors in proper motions range from about 1 to 10 mas/yr depending on magnitude and observing history. Systematic errors in proper motions are estimated to be about 1 to 4 mas/yr.
FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light th at could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operation of a robotic telescope for such a purpose and their implementation within the FRAM system.
70 - Bruce Gendre , 2018
The Virgin Island Robotic Telescope is located at the Etelman Observatory, St Thomas, since 2002. We will present its evolution since that date with the changes we have performed in order to modify an automated instrument, needing human supervision, to a fully robotic observatory. The system is based on ROS (Robotic Observatory Software) developed for TAROT and now installed on various observatories across the world (Calern, La Silla, Zadko, Les Markes, Etelman Observatory).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا