ترغب بنشر مسار تعليمي؟ اضغط هنا

Student understanding of the Boltzmann factor

244   0   0.0 ( 0 )
 نشر من قبل Trevor Smith
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable, nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations on student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions.



قيم البحث

اقرأ أيضاً

Common research tasks ask students to identify a correct answer and justify their answer choice. We propose expanding the array of research tasks to access different knowledge that students might have. By asking students to discuss answers they may n ot have chosen naturally, we can investigate students abilities to explain something that is already established or to disprove an incorrect response. The results of these research tasks also provide us with information about how students responses vary across the different tasks. We discuss three underused question types, their possible benefits and some preliminary results from an electric circuits pretest utilizing these new question types. We find that the answer students most commonly choose as correct is the same choice most commonly eliminated as incorrect. Also, students given the correct answer can provide valuable reasoning to explain it, but they do not spontaneously identify it as the correct answer.
One goal of physics instruction is to have students learn to make physical meaning of specific mathematical ideas, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor, using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency with the Taylor series despite previous exposures in both calculus and physics courses. We present students successes and failures both using and interpreting Taylor series expansions in a variety of contexts.
Immersive virtual reality (VR) has enormous potential for education, but classroom resources are limited. Thus, it is important to identify whether and when VR provides sufficient advantages over other modes of learning to justify its deployment. In a between-subjects experiment, we compared three methods of teaching Moon phases (a hands-on activity, VR, and a desktop simulation) and measured student improvement on existing learning and attitudinal measures. While a substantial majority of students preferred the VR experience, we found no significant differences in learning between conditions. However, we found differences between conditions based on gender, which was highly correlated with experience with video games. These differences may indicate certain groups have an advantage in the VR setting.
69 - T. Banks , M.D. Rhodes , 2020
An update is given on the exoplanet research collaboration between Nielsen (a marketing research company), Brigham Young University, and NZ universities with the National University of Singapore, which has been expanded to include a community college in the US. Key achievements from the past year are outlined, including density estimates for HD 209458 and Kepler 1 from radial velocity and transit fits. A comparison between the WinFitter optimizer and other techniques is outlined, showing that WinFitter estimated statistical errors are essentially in line (bar a scaling proportion) with those estimated via Markov Chain Monte Carlo techniques.
In many upper-division lab courses, instructors implement multiweek student-led projects. During such projects, students may design and carry out experiments, collect and analyze data, document and report their findings, and collaborate closely with peers and mentors. To better understand cognitive, social, and affective aspects of projects, we conducted an exploratory investigation of student ownership of projects. Ownership is a complex construct that refers to, e.g., students willingness and ability to make strategic decisions about their project. Using data collected through surveys and interviews with students and instructors at five institutions, we developed a preliminary model for student ownership of projects. Our model describes student interactions with the project during three phases: choice of topic, execution of experiment, and synthesis of results. Herein, we explicate our model and demonstrate that it maps well onto students and instructors conceptions of ownership and ideas presented in prior literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا