ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of ISR-FSR interference in the processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma

142   0   0.0 ( 0 )
 نشر من قبل Michel Davier
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge asymmetry in processes e+ e- --> mu+ mu- gamma and e+ e- --> pi+ pi- gamma is measured using 232 fb-1 of data collected with the BABAR detector at center-of-mass energies near 10.58 GeV. An observable is introduced and shown to be very robust against detector asymmetries while keeping a large sensitivity to the physical charge asymmetry that results from the interference between initial and final state radiation. The asymmetry is determined as afunction of the invariant mass of the final-state tracks from production threshold to a few GeV/c2. It is compared to the expectation from QED for e+ e- --> mu+ mu- gamma and from theoretical models for e+ e- --> pi+ pi- gamma. A clear interference pattern is observed in e+ e- --> pi+ pi- gamma, particularly in the vicinity of the f_2(1270) resonance. The inferred rate of lowest order FSR production is consistent with the QED expectation for e+ e- --> mu+ mu- gamma, and is negligibly small for e+ e- --> pi+ pi- gamma.



قيم البحث

اقرأ أيضاً

Based on a sample of 225.3 million J/psi events accumulated with the BESIII detector at the BEPCII, the decays of eta to pi+pi-l+l- are studied via J/psi to gammaeta. A clear eta signal is observed in the pi+pi-e+e- mass spectrum, and the branching f raction is measured to be BR(eta to pi+pi-e+e-) = (2.11pm0.12 (stat.)pm0.15 (syst.))times10^{-3}, which is in good agreement with theoretical predictions and the previous measurement, but is determined with much higher precision. No eta signal is found in the pi+ pi- mu+ mu- mass spectrum, and the upper limit is determined to be BR(eta to pi+ pi- mu+ mu-)<2.9times10^{-5} at the 90% confidence level.
We have measured the ratio $sigma(e^+e^-rightarrowpi^+pi^-gamma)/sigma(e^+e^-rightarrow mu^+mu^-gamma)$, with the KLOE detector at DA$Phi$NE for a total integrated luminosity of $sim$ 240 pb$^{-1}$. From this ratio we obtain the cross section $sigma( e^+e^-rightarrowpi^+pi^-)$. From the cross section we determine the pion form factor $|F_pi|^2$ and the two-pion contribution to the muon anomaly $a_mu$ for $0.592<M_{pipi}<0.975$ GeV, $Delta^{pipi} a_mu$= $({rm 385.1pm1.1_{stat}pm2.7_{sys+theo}})times10^{-10}$. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.
113 - John Belz 1999
We present new results on the related rare KL decay modes KL -> pi+ pi- gamma and KL -> pi+ pi- e+ e-. KTeV has performed the first direct measurement of the form factor for the direct emission component of KL -> pi+ pi- gamma decays, a quantity with ramifications for particular chiral models. In addition, the form factor and direct emission/inner bremsstrahlung branching ratio - also presented here - are important input parameters for the understanding of the planar-angle distribution of KL -> pi+ pi- e+ e- decays. Preliminary results indicating the presence of a T-violating asymmetry in the KL -> pi+ pi- e+ e- angular distribution are presented.
We present the first measurements of branching fractions of rare tau-lepton decays, $tau^- rightarrow pi^- u_{tau} ell^+ ell^-$ ($ell = e$ or $mu$), using a data sample corresponding to 562 fb$^{-1}$ collected at a center-of-mass energy of 10.58 GeV with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The $tau^- rightarrow pi^- u_tau e^+ e^-$ decay is observed for the first time with 7.0$sigma$ significance. The partial branching fraction determined by the structure-dependent mechanisms mediated by either a vector or an axial-vector current for the mass region $M_{pi e e}>1.05$ GeV/$c^2$ is measured to be $mathcal{B}(tau^-rightarrow pi^- u_tau e^+ e^-)[M_{pi^- e^+ e^-}>1.05~{rm GeV}/c^2] = (5.90 pm 0.53 pm 0.85 pm 0.11) times 10^{-6}$, where the first uncertainty is statistical, the second is systematic, and the third is due to the model dependence. In the full phase space, due to the different detection efficiencies for the structure-dependent mechanisms mediated by axial-vector and vector currents, the branching fraction varies from $mathcal{B}_{A}(tau^-rightarrow pi^- u_tau e^+ e^-) = (1.46 pm 0.13 pm 0.21) times 10^{-5}$ to $mathcal{B}_{V}(tau^-rightarrow pi^- u_tau e^+ e^-) = (3.01 pm 0.27 pm 0.43) times 10^{-5}$, respectively. An upper limit is set on the branching fraction of the $tau^- rightarrow pi^- u_tau mu^+ mu^-$ decay, $mathcal{B}(tau^-rightarrow pi^- u_tau mu^+ mu^-) < 1.14 times 10^{-5}$, at the 90% confidence level.
Results of the SND experiment at the VEPP-2M e+ e- collider on the QED processes e+ e- --> e+ e- gamma and e+ e- --> e+ e- gamma gamma with production at large angles are presented. Energy and angular distributions of the final particles were studied . No deviations from QED with an accuracy of 3.8% for the first process and 10.3% for the second were found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا