ﻻ يوجد ملخص باللغة العربية
One of the most relevant weather regimes in the mid-latitudes atmosphere is the persistent deviation from the approximately zonally symmetric jet to the emergence of blocking patterns. Such configurations are usually connected to exceptional local stability properties of the flow which come along with an improved local forecast skills during the phenomenon. It is instead extremely hard to predict onset and decay of blockings. Covariant Lyapunov Vectors (CLVs) offer a suitable characterization of the linear stability of a chaotic flow, since they represent the full tangent linear dynamics by a covariant basis which explores linear perturbations at all time scales. Therefore, we assess whether CLVs feature a signature of the blockings. As a first step, we examine the CLVs for a quasi-geostrophic beta-plane 2-layer model in a periodic channel baroclinically driven by a meridional temperature gradient $Delta T$. An orographic forcing enhances the emergence of localized blocked regimes. We detect the blocking events with a Tibaldi-Molteni scheme adapted to the periodic channel. When blocking occurs, the global growth rates of the fastest growing CLVs are significantly higher. Hence, against intuition, the circulation is globally more unstable in blocked phases. Such an increase in the finite time Lyapunov exponents with respect to the long term average is attributed to stronger barotropic and baroclinic conversion in the case of high temperature gradients, while for low values of Delta T, the effect is only due to stronger barotropic instability. In order to determine the localization of the CLVs we compare the meridionally averaged variance of the CLVs during blocked and unblocked phases. We find that on average the variance of the CLVs is clustered around the center of blocking. These results show that the blocked flow affects all time scales and processes described by the CLVs.
Lyapunov exponents are well-known characteristic numbers that describe growth rates of perturbations applied to a trajectory of a dynamical system in different state space directions. Covariant (or characteristic) Lyapunov vectors indicate these dire
The classical approach for studying atmospheric variability is based on defining a background state and studying the linear stability of the small fluctuations around such a state. Weakly non-linear theories can be constructed using higher order expa
In an incompressible flow, fluid density remains invariant along fluid element trajectories. This implies that the spatial distribution of non-interacting noninertial particles in such flows cannot develop density inhomogeneities beyond those that ar
Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network link
We explore the chaotic dynamics of Rayleigh-Benard convection using large-scale, parallel numerical simulations for experimentally accessible conditions. We quantify the connections between the spatiotemporal dynamics of the leading-order Lyapunov ve