ﻻ يوجد ملخص باللغة العربية
We initiate the study of a quantity that we call coordination complexity. In a distributed optimization problem, the information defining a problem instance is distributed among $n$ parties, who need to each choose an action, which jointly will form a solution to the optimization problem. The coordination complexity represents the minimal amount of information that a centralized coordinator, who has full knowledge of the problem instance, needs to broadcast in order to coordinate the $n$ parties to play a nearly optimal solution. We show that upper bounds on the coordination complexity of a problem imply the existence of good jointly differentially private algorithms for solving that problem, which in turn are known to upper bound the price of anarchy in certain games with dynamically changing populations. We show several results. We fully characterize the coordination complexity for the problem of computing a many-to-one matching in a bipartite graph by giving almost matching lower and upper bounds.Our upper bound in fact extends much more generally, to the problem of solving a linearly separable convex program. We also give a different upper bound technique, which we use to bound the coordination complexity of coordinating a Nash equilibrium in a routing game, and of computing a stable matching.
We initiate the study of computing (near-)optimal contracts in succinctly representable principal-agent settings. Here optimality means maximizing the principals expected payoff over all incentive-compatible contracts---known in economics as second-b
We study the role of interactivity in distributed statistical inference under information constraints, e.g., communication constraints and local differential privacy. We focus on the tasks of goodness-of-fit testing and estimation of discrete distrib
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of
Suppose, we are given a set of $n$ elements to be clustered into $k$ (unknown) clusters, and an oracle/expert labeler that can interactively answer pair-wise queries of the form, do two elements $u$ and $v$ belong to the same cluster?. The goal is to
MAXCUT defines a classical NP-hard problem for graph partitioning and it serves as a typical case of the symmetric non-monotone Unconstrained Submodular Maximization (USM) problem. Applications of MAXCUT are abundant in machine learning, computer vis