ﻻ يوجد ملخص باللغة العربية
We revisit the relation between the shear stress relaxation modulus $G(t)$, computed at finite shear strain $0 < gamma ll 1$, and the shear stress autocorrelation functions $C(t)|_{gamma}$ and $C(t)|_{tau}$ computed, respectively, at imposed strain $gamma$ and mean stress $tau$. Focusing on permanent isotropic spring networks it is shown theoretically and computationally that in general $G(t) = C(t)|_{tau} = C(t)|_{gamma} + G_{eq}$ for $t > 0$ with $G_{eq}$ being the static equilibrium shear modulus. $G(t)$ and $C(t)|_{gamma}$ thus must become different for solids and it is impossible to obtain $G_{eq}$ alone from $C(t)|_{gamma}$ as often assumed. We comment briefly on self-assembled transient networks where $G_{eq}(f)$ must vanish for a finite scission-recombination frequency $f$. We argue that $G(t) = C(t)|_{tau} = C(t)|_{gamma}$ should reveal an intermediate plateau set by the shear modulus $G_{eq}(f=0)$ of the quenched network.
The shear stress relaxation modulus $G(t)$ may be determined from the shear stress $tau(t)$ after switching on a tiny step strain $gamma$ or by inverse Fourier transformation of the storage modulus $G^{prime}(omega)$ or the loss modulus $G^{primeprim
Focusing on isotropic elastic networks we propose a novel simple-average expression $G(t) = mu_A - h(t)$ for the computational determination of the shear-stress relaxation modulus $G(t)$ of a classical elastic solid or fluid and its equilibrium modul
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time $Delta t$. The linear response is charac
Using molecular dynamics simulation of a standard coarse-grained polymer glass model we investigate by means of the stress-fluctuation formalism the shear modulus $mu$ as a function of temperature $T$ and sampling time $Delta t$. While the ensemble-a
Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the o