ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hadronic Scenario for the Galactic Ridge

207   0   0.0 ( 0 )
 نشر من قبل Antonio Marinelli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several observations from Fermi-LAT, up to few hundred GeV, and from H.E.S.S., up to $sim$ 10 TeV, reported an intense $gamma$-ray emission from the inner part of the Galactic plane. After the subtraction of point-like contributions, the remaining $gamma$-ray spectrum can provide important hints about the cosmic-ray (CR) population in that region. In particular, the diffuse spectrum measured by both Fermi-LAT and H.E.S.S. in the Galactic Ridge is significantly harder with respect to the rest of the Galaxy. These results were recently interpreted in terms of a comprehensive CR transport model which, adopting a spatial dependent diffusion coefficient and convective velocity, reproduces Fermi-LAT results on the whole sky as well as local CR spectra. We showed as that model predicts a significantly harder neutrino diffuse emission compared to conventional scenarios: The predicted signal is able to account for a significant fraction of the astrophysical flux measured by IceCube. In this contribution, we use the same setup to calculate the expected neutrino flux from several windows in the inner Galactic plane and compare the results with IceCube observations and the sensitivities of Mediterranean neutrino telescopes. In particular, for the ANTARES experiment, we compare the model expectations with the upper limits obtained from a recent unblinded data-analysis focused on the galactic ridge region. Moreover, we also show the expectations from the galactic ridge for the future KM3NeT observatory, whose position is optimal to observe this portion of the sky.



قيم البحث

اقرأ أيضاً

We have compared the TeV gamma-rays with the new 12CO J=2-1 data toward HESS J1745-303 in the Galactic center and confirmed that the molecular gas MG358.9-0.5 toward (l, b)=(358.9, -0.5 at VLSR=-100-0 km s-1 shows a reasonable positional agreement wi th the primary peak (northern part) of the gamma-ray source. For the southern part of HESS J1745-303, we see no CO counterpart, whereas the HI gas in the Parkes 21 cm HI dataset shows a possible counterpart to the gamma-ray source. This HI gas may be optically thick as supported by the HI line shape similar to the optically thick 12CO. We estimate the total mass of interstellar protons including both the molecular and atomic gas to be 2x10^6 Mo and the cosmic-ray proton energy to be 6x10^{48} ergs in the hadronic scenario. We discuss possible origins of the cosmic-ray protons including the nearby SNR G359.1-0.5. The SNR may be able to explain the northern gamma-ray source but the southern source seems to be too far to be energized by the SNR. As an alternative, we argue that the second-order Fermi acceleration in the inter-clump space surrounded by randomly moving high-velocity clumps may offer a possible mechanism to accelerate protons. The large turbulent motion with velocity dispersion of ~15 km s-1 has energy density two orders of magnitude higher than in the solar vicinity and is viable as the energy source.
119 - Andrew W. Smith 2015
The Galactic Center Ridge has been observed extensively in the past by both GeV and TeV instruments revealing a wealth of structure, including both a diffuse component, the point sources G0.9+0.1 (a composite supernova remnant) and SgrA* (believed to be associated with the super massive black hole located at the center of our galaxy). Previous observations (> 300 GeV) with the H.E.S.S. array have also detected an extended TeV component along the Galactic plane due to either diffuse emission or a host of unresolved point sources. Here we report on the VERITAS observations of the Galactic Center Ridge from 2010-2014 in the energy range above 2 TeV. From these observations we 1.) Provide improved measurements of the differential energy spectra for SgrA* in the multi-TeV regime, 2.) Provide a detection in the >2 TeV band of the composite SNR G0.9+0.1 and an improvement of its multi-TeV energy spectrum. 3.) Report on the detection of an extended component of emission along the Galactic plane by VERITAS. 4.) Report on the detection of VER J1746-289, a localized enhancement of TeV emission along the Galactic plane.
393 - Andrew W. Smith 2015
Due to its extraordinarily high concentration of known relativistic particle accelerators such as pulsar wind nebula, supernova remnants, dense molecular cloud regions, and the supermassive black hole (Sgr A*); the center of the Milky Way galaxy has long been an ideal target for high energy (HE, 0.1-100 GeV) and very high energy ( VHE, 50 GeV-50 TeV) gamma-ray emission. Indeed, detections of Sgr A* and other nearby regions of gamma-ray emission have been reported by EGRET and Fermi-LAT in the HE band, as well as CANGAROO, Whipple, HESS, VERITAS, and MAGIC in the VHE band. Here we report on the results of extended observations of the region with VERITAS between 2010-2014. Due to the visibility of the source for VERITAS in the Northern Hemisphere, these observations provide the most sensitive probe of gamma-ray emission above 2 TeV in one of the most complicated and interesting regions of our home galaxy.
166 - A. Archer , W. Benbow , R. Bird 2016
The Galactic Center Ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component as well as the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center Ridge from 2010-2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we 1.) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, 2.) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, 3.) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.
Compelling evidence for the existence of astrophysical neutrinos has been reported by the IceCube collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This co uld be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices are set. This constrains the number of IceCube events possibly originating from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to associated IceCube High Energy Starting Events is excluded at 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا