ﻻ يوجد ملخص باللغة العربية
A magnetic domain boundary on the surface of a three-dimensional topological insulator is predicted to host a chiral edge state, but direct demonstration is challenging. Here, we used a scanning superconducting quantum interference device to show that current in a magnetized EuS/Bi2Se3 heterostructure flows at the edge when the Fermi level is gate-tuned to the surface band gap. We further induced micron-scale magnetic structures on the heterostructure, and detected a chiral edge current at the magnetic domain boundary. The chirality of the current was determined by magnetization of the surrounding domain and its magnitude by the local chemical potential rather than the applied current. Such magnetic structures, provide a platform for detecting topological magnetoelectric effects and may enable progress in quantum information processing and spintronics.
The electronic orders in magnetic and dielectric materials form the domains with different signs of order parameters. The control of configuration and motion of the domain walls (DWs) enables gigantic, nonvolatile responses against minute external fi
The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin-orbit interaction in solids
We study the transport on the domain wall (DW) in a magnetic topological insulator. The low-energy behaviors of the magnetic topological insulator are dominated by the chiral edge states (CESs). Here, we find that the spectrum and transport of the CE
We consider a magnetic skyrmion crystal formed at the surface of a topological insulator. Incorporating the exchange interaction between the helical Dirac surface states and the periodic Neel or Bloch skyrmion texture, we obtain the resulting electro
Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons o