ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Measurement of the $e^+e^-$ Flux above 1 TeV with HAWC

302   0   0.0 ( 0 )
 نشر من قبل Segev BenZvi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The High-Altitude Water Cherenkov (HAWC) Observatory records the air showers produced by cosmic rays and gamma rays at a rate of about 20 kHz. While the events observed by HAWC are 99.9% hadronic cosmic rays, this background can be strongly suppressed using topological cuts that preferentially select electromagnetic air showers. Using this capability of HAWC, we can create a sample of air showers dominated by gamma rays and cosmic electrons and positrons. HAWC is one of the few operating observatories capable of measuring showers produced by electron and positron primaries above 1 TeV, and can record these showers from two-thirds of the sky each day. We describe the sensitivity of HAWC to leptonic cosmic rays, and discuss prospects for the measurement of the combined $e^+e^-$ flux and possible approaches for positron and electron charge separation with the HAWC detector.



قيم البحث

اقرأ أيضاً

88 - Manuela Vecchi 2017
We present a precise measurement of the combined electron plus positron flux from 0.5 GeV to 1 TeV, based on the analysis of the data collected by the Alpha Magnetic Spectrometer during the first 30 months of operations aboard the International Space Station. The statistics and the high resolution of AMS-02 detector provide a precise measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the combined electron plus positron flux can be described accurately by a single power law.
We present the first catalog of gamma-ray sources emitting above 56 and 100 TeV with data from the High Altitude Water Cherenkov (HAWC) Observatory, a wide field-of-view observatory capable of detecting gamma rays up to a few hundred TeV. Nine source s are observed above 56 TeV, all of which are likely Galactic in origin. Three sources continue emitting past 100 TeV, making this the highest-energy gamma-ray source catalog to date. We report the integral flux of each of these objects. We also report spectra for three highest-energy sources and discuss the possibility that they are PeVatrons.
We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energ y-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWCs ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape $left(frac{dN}{dE} = phi_0 left(E/textrm{7 TeV}right)^{-alpha-betalnleft(E/textrm{7 TeV}right)}right)$ with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are $phi_o$=(2.35$pm$0.04$^{+0.20}_{-0.21}$)$times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $alpha$=2.79$pm$0.02$^{+0.01}_{-0.03}$, and $beta$=0.10$pm$0.01$^{+0.01}_{-0.03}$. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are $phi_o$=(2.31$pm$0.02$^{+0.32}_{-0.17}$)$times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $alpha$=2.73$pm$0.02$^{+0.03}_{-0.02}$, and $beta$=0.06$pm$0.01$pm$0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.
The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field-of-view gamma-ray observatory that is optimized to detect gamma rays between ~300 GeV and several hundred TeV. The HAWC Collaboration recently released their third source catalog (3 HWC), which contains 65 sources. One of these sources, the ultra-high-energy gamma-ray source 3HWC J1908+063, may exhibit a hardening of the spectral index at the highest energies (above 56 TeV). At least two populations of particles are needed to satisfactorily explain the highest energy emission. This second component could be leptonic or hadronic in origin. If it is hadronic in origin, it would imply the presence of protons with energies up to $sim$1 PeV near the source. We have searched other 3HWC sources for the presence of this spectral hardening feature. If observed, this would imply that the sources could make good PeVatron candidates.
Due to the high energies and long distances involved, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz Invariance Violation (LIV). Superluminal LIV enables the decay of photons at high energy over relativ ely short distances, giving astrophysical spectra which have a hard cutoff above this energy. The High Altitude Water Cherenkov (HAWC) observatory is the most sensitive currently-operating gamma-ray observatory in the world above 10 TeV. Together with the recent development of an energy-reconstruction algorithm for HAWC using an artificial neural network, HAWC can make detailed measurements of gamma-ray energies above 100 TeV. With these observations, HAWC can limit the LIV energy scale greater than $10^{31}$ eV, over 800 times the Planck energy scale. This limit on LIV is over 60 times more constraining than the best previous value for $rm E_{LIV}^{(1)}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا