ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensionality Reduction of Collective Motion by Principal Manifolds

419   0   0.0 ( 0 )
 نشر من قبل Kelum Gajamannage
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods are not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.



قيم البحث

اقرأ أيضاً

If a given behavior of a multi-agent system restricts the phase variable to a invariant manifold, then we define a phase transition as change of physical characteristics such as speed, coordination, and structure. We define such a phase transition as splitting an underlying manifold into two sub-manifolds with distinct dimensionalities around the singularity where the phase transition physically exists. Here, we propose a method of detecting phase transitions and splitting the manifold into phase transitions free sub-manifolds. Therein, we utilize a relationship between curvature and singular value ratio of points sampled in a curve, and then extend the assertion into higher-dimensions using the shape operator. Then we attest that the same phase transition can also be approximated by singular value ratios computed locally over the data in a neighborhood on the manifold. We validate the phase transitions detection method using one particle simulation and three real world examples.
Movement primitives are an important policy class for real-world robotics. However, the high dimensionality of their parametrization makes the policy optimization expensive both in terms of samples and computation. Enabling an efficient representatio n of movement primitives facilitates the application of machine learning techniques such as reinforcement on robotics. Motions, especially in highly redundant kinematic structures, exhibit high correlation in the configuration space. For these reasons, prior work has mainly focused on the application of dimensionality reduction techniques in the configuration space. In this paper, we investigate the application of dimensionality reduction in the parameter space, identifying principal movements. The resulting approach is enriched with a probabilistic treatment of the parameters, inheriting all the properties of the Probabilistic Movement Primitives. We test the proposed technique both on a real robotic task and on a database of complex human movements. The empirical analysis shows that the dimensionality reduction in parameter space is more effective than in configuration space, as it enables the representation of the movements with a significant reduction of parameters.
In this work, we present a quantum neighborhood preserving embedding and a quantum local discriminant embedding for dimensionality reduction and classification. We demonstrate that these two algorithms have an exponential speedup over their respectiv ely classical counterparts. Along the way, we propose a variational quantum generalized eigenvalue solver that finds the generalized eigenvalues and eigenstates of a matrix pencil $(mathcal{G},mathcal{S})$. As a proof-of-principle, we implement our algorithm to solve $2^5times2^5$ generalized eigenvalue problems. Finally, our results offer two optional outputs with quantum or classical form, which can be directly applied in another quantum or classical machine learning process.
Spectral dimensionality reduction methods enable linear separations of complex data with high-dimensional features in a reduced space. However, these methods do not always give the desired results due to irregularities or uncertainties of the data. T hus, we consider aggressively modifying the scales of the features to obtain the desired classification. Using prior knowledge on the labels of partial samples to specify the Fiedler vector, we formulate an eigenvalue problem of a linear matrix pencil whose eigenvector has the feature scaling factors. The resulting factors can modify the features of entire samples to form clusters in the reduced space, according to the known labels. In this study, we propose new dimensionality reduction methods supervised using the feature scaling associated with the spectral clustering. Numerical experiments show that the proposed methods outperform well-established supervised methods for toy problems with more samples than features, and are more robust regarding clustering than existing methods. Also, the proposed methods outperform existing methods regarding classification for real-world problems with more features than samples of gene expression profiles of cancer diseases. Furthermore, the feature scaling tends to improve the clustering and classification accuracies of existing unsupervised methods, as the proportion of training data increases.
We consider the problem of the implementation of Stimulated Raman Adiabatic Passage (STIRAP) processes in degenerate systems, with a view to be able to steer the system wave function from an arbitrary initial superposition to an arbitrary target supe rposition. We examine the case a $N$-level atomic system consisting of $ N-1$ ground states coupled to a common excited state by laser pulses. We analyze the general case of initial and final superpositions belonging to the same manifold of states, and we cover also the case in which they are non-orthogonal. We demonstrate that, for a given initial and target superposition, it is always possible to choose the laser pulses so that in a transformed basis the system is reduced to an effective three-level $Lambda$ system, and standard STIRAP processes can be implemented. Our treatment leads to a simple strategy, with minimal computational complexity, which allows us to determine the laser pulses shape required for the wanted adiabatic steering.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا