ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile neutrinos with pseudoscalar self-interactions and cosmology

216   0   0.0 ( 0 )
 نشر من قبل Steen Hannestad
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sterile neutrinos in the electronvolt mass range are hinted at by a number of terrestrial neutrino experiments. However, such neutrinos are highly incompatible with data from the Cosmic Microwave Background and large scale structure. This paper discusses how charging sterile neutrinos under a new pseudoscalar interaction can reconcile eV sterile neutrinos with terrestrial neutrino data. We show that this model can reconcile eV sterile neutrinos in cosmology, providing a fit to all available data which is way better than the standard $Lambda$CDM model with one additional fully thermalized sterile neutrino. In particular it also prefers a value of the Hubble parameter much closer to the locally measured value.



قيم البحث

اقرأ أيضاً

Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they suppress structure formation unless they can b e prevented from thermalising in the early Universe or removed by subsequent decay or annihilation. Here we present a novel scenario in which both sterile neutrinos and dark matter are coupled to a new, light pseudoscalar. This can prevent thermalisation of sterile neutrinos and make dark matter sufficiently self-interacting to have an impact on galactic dynamics and possibly resolve some of the known problems with the standard cold dark matter scenario. Even more importantly it leads to a strongly self-interacting plasma of sterile neutrinos and pseudoscalars at late times and provides an excellent fit to CMB data. The usual cosmological neutrino mass problem is avoided by sterile neutrino annihilation to pseudoscalars. The preferred value of $H_0$ is substantially higher than in standard $Lambda$CDM and in much better agreement with local measurements.
176 - Ninetta Saviano 2014
Short-baseline neutrino anomalies suggest the existence of low-mass ( m sim O(1)~eV) sterile neutrinos u_s. These would be efficiently produced in the early universe by oscillations with active neutrino species, leading to a thermal population of th e sterile states seemingly incompatible with cosmological observations. In order to relieve this tension it has been recently speculated that new secret interactions among sterile neutrinos, mediated by a massive gauge boson X (with M_X << M_W), can inhibit or suppress the sterile neutrino thermalization, due to the production of a large matter potential term. We note however, that they also generate strong collisional terms in the sterile neutrino sector that induce an efficient sterile neutrino production after a resonance in matter is encountered, increasing their contribution to the number of relativistic particle species N_ eff. Moreover, for values of the parameters of the u_s- u_s interaction for which the resonance takes place at temperature Tlesssim few MeV, significant distortions are produced in the electron (anti)neutrino spectra, altering the abundance of light element in Big Bang Nucleosynthesis (BBN). Using the present determination of $^4$He and deuterium primordial abundances we determine the BBN constraints on the model parameters. We find that $^2$H/H density ratio exclude much of the parameter space if one assume a baryon density at the best fit value of Planck experiment, Omega_B h^2= 0.02207, while bounds become weaker for a higher Omega_B h^2=0.02261, the 95 % C.L. upper bound of Planck. Due to the large error on its experimental determination, the helium mass fraction Y_p gives no significant bounds.
Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson $X$ (with $M_X ll M_W$), and characterized by a gauge coupling $g_X$, have been proposed as a mean to reconcile cosmological observations and short-baseline lab oratory anomalies. We constrain this scenario using the latest Planck data on Cosmic Microwave Background anisotropies, and measurements of baryon acoustic oscillations (BAO). We consistently include the effect of secret interactions on cosmological perturbations, namely the increased density and pressure fluctuations in the neutrino fluid, and still find a severe tension between the secret interaction framework and cosmology. In fact, taking into account neutrino scattering via secret interactions, we derive our own mass bound on sterile neutrinos and find (at 95% CL) $m_s < 0.82$ eV or $m_s < 0.29$ eV from Planck alone or in combination with BAO, respectively. These limits confirm the discrepancy with the laboratory anomalies. Moreover, we constrain, in the limit of contact interaction, the effective strength $G_X$ to be $ < 2.8 (2.0) times 10^{10},G_F$ from Planck (Planck+BAO). This result, together with the mass bound, strongly disfavours the region with $M_X sim 0.1$ MeV and relatively large coupling $g_Xsim 10^{-1}$, previously indicated as a possible solution to the small scale dark matter problem.
Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of $H_0$ measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high $ell$ polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.
Short baseline neutrino experiments, like LSND and MiniBooNE experiments, pointed towards the existence of eV mass scale sterile neutrinos. To reconcile sterile neutrinos with cosmology self interaction between sterile neutrinos has been studied. We analysed Planck cosmic microwave background (CMB) data with self-interacting sterile neutrino (SI$ u$) and study their impact on inflation models. The fit to the CMB data in SI$ u$ model is as good as the fit to $Lambda$CDM model. We find that the spectral index ($n_s$) values shift to $0.9361pm 0.0055$ in SI$ u$ model. This has significant impact on the validity of different inflation models. For example the Starobinsky and quartic hilltop model, which were allowed within $Lambda$CDM cosmology, are ruled out. On the other hand some models like natural and Coleman-Weinberg inflation are now favoured. Therefore, the existence of self interacting sterile neutrinos with eV order of mass will play an important role in the selection of correct inflation model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا