ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounds on higher-order Lorentz-violating photon sector coefficients from an asymmetric optical ring resonator experiment

81   0   0.0 ( 0 )
 نشر من قبل Stephen Parker
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical resonators provide a powerful tool for testing aspects of Lorentz invariance. Here, we present a reanalysis of an experiment where a path asymmetry was created in an optical ring resonator by introducing a dielectric prism in one arm. The frequency difference of the two fundamental counter-propagating modes was then recorded as the apparatus was orientation-modulated in the laboratory. By assuming that the minimal Standard-Model Extension coefficients vanish we are able to place bounds on higher-order parity-odd Lorentz-violating coefficients of the Standard-Model Extension. The results presented in this work set the first constraints on two previously unbounded linear combinations of d=8 parity-odd nonbirefringent nondispersive coefficients of the photon sector.



قيم البحث

اقرأ أيضاً

We have developed an apparatus to search for the higher-order Lorentz violation in photons by measuring the resonant frequency difference between two counterpropagating directions of an asymmetric optical ring cavity. From the year-long data taken be tween 2012 and 2013, we found no evidence for the light speed anisotropy at the level of $delta c/c lesssim 10^{-15}$. Limits on the dipole components of the anisotropy are improved by more than an order of magnitude, and limits on the hexapole components are obtained for the first time. An overview of our apparatus and the data analysis in the framework of the spherical harmonics decomposition of anisotropy are presented. We also present the status of the recent upgrade of the apparatus.
Interferometric gyroscope systems are being developed with the goal of measuring general-relativistic effects including frame-dragging effects. Such devices are also capable of performing searches for Lorentz violation. We summarize efforts that rela te gyroscope measurements to coefficients for Lorentz violation in the gravity sector of the Standard-Model Extension.
We place limits on spherical coefficients for Lorentz violation involving operators of dimension four in the photon sector of the minimal Standard-Model Extension. The bounds are deduced from existing experimental results with optical-cavity oscillators.
We study an extension of QED involving a light pseudoscalar (an axion-like particle), together with a very massive fermion which has Lorentz-violating interactions with the photon and the pseudoscalar, including a nonminimal Lorentz-violating couplin g. We investigate the low energy effective action for this model, after integration over the fermion field, and show that interesting results are obtained, such as the generation of a correction to the standard coupling between the axion-like particle and the photon, as well as Lorentz-violating effects in the interaction energy involving electromagnetic sources such as pointlike charges, steady line currents and Dirac strings.
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum o f excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of operators that splits the fundamental fields according to their individual degrees of freedom. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes gets a new insight. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a time-like vector of the type $v^{mu} = (mu,vec{0})$. Spectral consistency imposes taht the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to usual gauge theories whenever conditions for suppression of tachyons and ghosts are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا