ﻻ يوجد ملخص باللغة العربية
Optical resonators provide a powerful tool for testing aspects of Lorentz invariance. Here, we present a reanalysis of an experiment where a path asymmetry was created in an optical ring resonator by introducing a dielectric prism in one arm. The frequency difference of the two fundamental counter-propagating modes was then recorded as the apparatus was orientation-modulated in the laboratory. By assuming that the minimal Standard-Model Extension coefficients vanish we are able to place bounds on higher-order parity-odd Lorentz-violating coefficients of the Standard-Model Extension. The results presented in this work set the first constraints on two previously unbounded linear combinations of d=8 parity-odd nonbirefringent nondispersive coefficients of the photon sector.
We have developed an apparatus to search for the higher-order Lorentz violation in photons by measuring the resonant frequency difference between two counterpropagating directions of an asymmetric optical ring cavity. From the year-long data taken be
Interferometric gyroscope systems are being developed with the goal of measuring general-relativistic effects including frame-dragging effects. Such devices are also capable of performing searches for Lorentz violation. We summarize efforts that rela
We place limits on spherical coefficients for Lorentz violation involving operators of dimension four in the photon sector of the minimal Standard-Model Extension. The bounds are deduced from existing experimental results with optical-cavity oscillators.
We study an extension of QED involving a light pseudoscalar (an axion-like particle), together with a very massive fermion which has Lorentz-violating interactions with the photon and the pseudoscalar, including a nonminimal Lorentz-violating couplin
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum o