ﻻ يوجد ملخص باللغة العربية
Thermal transport in solids changes its nature from phonon propagation that suffers from perturbative scattering to thermally activated hops between localized vibrational modes as the level of disorder increases. Models have been proposed to understand these two distinct extremes that predict opposite temperature dependence of the thermal conductivity, but not for the transition or the intermediate regime. Here we explore thermal transport in two-dimensional crystalline and amorphous silica with varying levels of disorder, {alpha}, by performing atomistic simulations as well as analysis based on the kinetic and Allen-Feldman theories. We demonstrate the crossover between the crystalline and amorphous regimes at {alpha} ~ 0.3, which can be identified by a turnover of the temperature dependence in thermal conductivity, and explained by the dominance of thermal hopping processes. The determination of this critical disorder level is also validated by the analysis of the participation ratio of localized vibrational modes, and the spatial localization of heat flux. These factors can serve as key indicators in characterizing the transition in heat transport mechanisms.
We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. The Raman spectroscopy was conducted using three different excitation lase
We investigated theoretically the phonon thermal conductivity of single layer graphene. The phonon dispersion for all polarizations and crystallographic directions in graphene lattice was obtained using the valence-force field method. The three-phono
In stark contrast with three-dimensional (3D) nanostructures, we show that boundary scattering in two-dimensional (2D) nanoribbons alone does not lead to a finite phonon mean free path. If combined with an intrinsic scattering mechanism, 2D boundary
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon
We use the time-resolved magneto-optical Kerr effect (TRMOKE) to measure the local temperature and heat flow dynamics in ferromagnetic SrRuO3 thin films. After heating by a pump pulse, the film temperature decays exponentially, indicating that the he