ﻻ يوجد ملخص باللغة العربية
We propose a new approach to the missing baryons problem. Building on the common assumption that the missing baryons are in the form of the Warm Hot Intergalactic Medium (WHIM), we further assumed here that the galaxy luminosity density can be used as a tracer of the WHIM. The latter assumption is supported by our finding of a significant correlation between the WHIM density and the galaxy luminosity density in the hydrodynamical simulations of Cui et al. (2012). We further found that the fraction of the gas mass in the WHIM phase is substantially (by a factor of $sim$1.6) higher within the large scale galactic filaments, i.e. $sim$70%, compared to the average in the full simulation volume of $sim$0.1,Gpc$^3$. The relation between the WHIM overdensity and the galaxy luminosity overdensity within the galactic filaments is consistent with linear: $delta_{rm whim},=,0.7,pm,0.1,times,delta_mathrm{LD}^{0.9 pm 0.2}$. We applied our procedure to the line of sight to the blazar H2356-309 and found evidence for the WHIM in correspondence of the Sculptor Wall (z $sim$0.03 and $log{N_H}$ = $19.9^{+0.1}_{-0.3}$) and Pisces-Cetus superclusters (z $sim$0.06 and $log{N_H}$ = $19.7^{+0.2}_{-0.3}$), in agreement with the redshifts and column densities of the X-ray absorbers identified and studied by Fang et al. (2010) and Zappacosta et al. (2010). This agreement indicates that the galaxy luminosity density and galactic filaments are reliable signposts for the WHIM and that our method is robust in estimating the WHIM density. The signal that we detected cannot originate from the halos of the nearby galaxies since they cannot account for the large WHIM column densities that our method and X-ray analysis consistently find in the Sculptor Wall and Pisces-Cetus superclusters.
We review the current high-significance X-ray detections of Warm-Hot Intergalactic Medium (WHIM) filaments at z>0 along the lines of sight to the two blazars Mrk 421 (z=0.03) and 1ES 1028+511 (z=0.361). For these WHIM filaments, we derive ionization
We present a new method to identify large scale filaments and apply it to a cosmological simulation. Using positions of haloes above a given mass as node tracers, we look for filaments between them using the positions and masses of all the remaining
We have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in th
The Perseus-Pisces supercluster is known as one of the largest structures in the nearby Universe that has been charted by the galaxy and galaxy cluster distributions. For the latter mostly clusters from the Abell catalogue have been used. Here we tak
We present predictions for galactic halo baryon fractions from cosmological hydrodynamic simulations with a well-constrained model for galactic outflows. Without outflows, halos contain roughly the cosmic fraction of baryons, slightly lowered at high