ﻻ يوجد ملخص باللغة العربية
In a continuous search for the energy-efficient electronic switches, a great attention is focused on tunnel field-effect transistors (TFETs) demonstrating an abrupt dependence of the source-drain current on the gate voltage. Among all TFETs, those based on one-dimensional (1D) semiconductors exhibit the steepest current switching due to the singular density of states near the band edges, though the current in 1D structures is pretty low. In this paper, we propose a TFET based on 2D graphene bilayer which demonstrates a record steep subthreshold slope enabled by van Hove singularities in the density of states near the edges of conduction and valence bands. Our simulations show the accessibility of 3.5 x 10$^4$ ON/OFF current ratio with 150 mV gate voltage swing, and a maximum subthreshold slope of (20 {mu}V/dec)$^{-1}$ just above the threshold. The high ON-state current of 0.8 mA/{mu}m is enabled by a narrow (~ 0.3 eV) extrinsic band gap, while the smallness of the leakage current is due to an all-electrical doping of the source and drain contacts which suppresses the band-tailing and trap-assisted tunneling.
Extensive scanning tunnelling microscopy and spectroscopy experiments complemented by first principles and parameterized tight binding calculations provide a clear answer to the existence, origin and robustness of van Hove singularities (vHs) in twis
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is d
The moire superlattice induced in graphene by the hexagonal boron nitride substrate modifies strongly the bandstructure of graphene, which manifests itself by the appearance of new Dirac points, accompanied by van Hove singularities. In this work, we
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue towards engineering the properties of quantum materials. Twisted bilayer graphene is a key materia