ﻻ يوجد ملخص باللغة العربية
Luttingers theorem is a fundamental result in the theory of interacting Fermi systems: it states that the volume inside the Fermi surface is left invariant by interactions, if the number of particles is held fixed. Although this is traditionally justified using perturbation theory, it can be viewed as arising from a momentum balance argument that examines the response of the ground state to the insertion of a single flux quantum [M. Oshikawa, Phys. Rev. Lett. 84, 3370 (2000)]. This reveals that the Fermi sea volume is a topologically protected quantity. Extending this approach, I show that spinless or spin-rotation-preserving fermionic systems in non-symmorphic crystals possess generalized topological Luttinger invariants that can be nonzero even in cases where the Fermi sea volume vanishes. A nonzero Luttinger invariant then forces energy bands to touch, leading to semimetals whose gaplessness is thus rooted in topology; opening a gap without symmetry breaking automatically triggers fractionalization. The existence of these invariants is linked to the inability of non-symmorphic crystals to host band insulating ground states except at special fillings. I exemplify the use of these new invariants by showing that they distinguish various classes of two- and three-dimensional semimetals.
We review the dimensional reduction procedure in the group cohomology classification of bosonic SPT phases with finite abelian unitary symmetry group. We then extend this to include general reductions of arbitrary dimensions and also extend the proce
The single crystal of RuAs obtained by Bi-flux method shows obvious successive metal-insulator transitions at T_MI1~255 K and T_MI2~195$ K. The X-ray diffraction measurement reveals a formation of superlattice of 3x3x3 of the original unit cell below
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly intera
The computation of certain obstruction functions is a central task in classifying interacting fermionic symmetry-protected topological (SPT) phases. Using techniques in group-cohomology theory, we develop an algorithm to accelerate this computation.
We propose the definitions of many-body topological invariants to detect symmetry-protected topological phases protected by point group symmetry, using partial point group transformations on a given short-range entangled quantum ground state. Partial