Deflection of light ray due to a charged body using Material Medium Approach


الملخص بالإنكليزية

The gravitational deflection of light ray is an important prediction of General Theory of Relativity. In this paper we develop analytical expression of the deflection of light ray without any weak field approximation due to a charged gravitational body represented by Reissner_Nordstrom (RN) and Janis-Newman-Winicour (JNW) space time geometry, using material medium approach. It is concluded that although both the geometries represent the charged, non-rotating, spherically symmetric gravitating body, but the effect of charge on the gravitational deflection is just opposite to each other. The gravitational deflection decreases with charge in the RN geometry and increases with charge in the JNW geometry. The calculations obtained here are compared with other methods done by different authors. The formalism is applied to an arbitrary selected pulsar PSRB1937+21 as a gravitating body, as a test case.

تحميل البحث